Skip to main content

Cerebral Microdialysis: Research Technique or Clinical Tool?

  • Protocol
  • First Online:
Microdialysis Techniques in Neuroscience

Part of the book series: Neuromethods ((NM,volume 75))

Abstract

Cerebral microdialysis is a well-established laboratory tool that is now widely used as a bedside monitor of brain tissue biochemistry during neurointensive care. With its ability to create a facsimile of brain tissue extracellular fluid (ECF) and characterize metabolic and biochemical changes, cerebral microdialysis is able to elucidate pathophysiological processes after brain injury and provide objective endpoints for clinical interventions and research. Microdialysis allows early recognition of cerebral hypoxia/ischemia and bioenergetic failure by monitoring changes in brain ECF glucose, lactate, pyruvate, glycerol, and glutamate concentrations. However, the sensitivity and specificity of microdialysis markers of ischemia and bioenergetic failure are not well characterized and there are no data to confirm whether microdialysis-guided therapy can influence outcome. The development of a system providing rapid analysis in “real time” is crucial to maximize the clinical applicability of the microdialysis technique.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bito L, Davson H, Levin E et al (1966) The concentrations of free amino acids and other electrolytes in cerebrospinal fluid, in vivo dialysate of brain, and blood plasma of the dog. J Neurochem 13:1057–1067

    Article  PubMed  CAS  Google Scholar 

  2. Benveniste H, Huttemeier PC (1990) Microdialysis–theory and application. Prog Neurobiol 35:195–215

    Article  PubMed  CAS  Google Scholar 

  3. Lindefors N, Amberg G, Ungerstedt U (1989) Intracerebral microdialysis: I. Experimental studies of diffusion kinetics. J Pharmacol Methods 22:141–156

    Article  PubMed  CAS  Google Scholar 

  4. Ungerstedt U (1991) Microdialysis–principles and applications for studies in animals and man. J Intern Med 230:365–373

    Article  PubMed  CAS  Google Scholar 

  5. Hillered L, Vespa PM, Hovda DA (2005) Translational neurochemical research in acute human brain injury: the current status and potential future for cerebral microdialysis. J Neurotrauma 22:3–41

    Article  PubMed  Google Scholar 

  6. Hutchinson PJ, O’Connell MT, Al-Rawi PG et al (2000) Clinical cerebral microdialysis: a methodological study. J Neurosurg 93:37–43

    Article  PubMed  CAS  Google Scholar 

  7. Hutchinson PJ, O’Connell MT, Nortje J et al (2005) Cerebral microdialysis methodology–evaluation of 20 kDa and 100 kDa catheters. Physiol Meas 26:423–428

    Article  PubMed  CAS  Google Scholar 

  8. Hillman J, Aneman O, Anderson C et al (2005) A microdialysis technique for routine measurement of macromolecules in the injured human brain. Neurosurgery 56:1264–1268

    Article  PubMed  Google Scholar 

  9. Westerink BH, De Vries JB (1988) Characterization of in vivo dopamine release as determined by brain microdialysis after acute and subchronic implantations: methodological aspects. J Neurochem 51:683–687

    Article  PubMed  CAS  Google Scholar 

  10. Nordstrom CH (2010) Cerebral energy metabolism and microdialysis in neurocritical care. Childs Nerv Syst 26:465–472

    Article  PubMed  Google Scholar 

  11. Ronne-Engstrom E, Cesarini KG, Enblad P et al (2001) Intracerebral microdialysis in neurointensive care: the use of urea as an endogenous reference compound. J Neurosurg 94:397–402

    Article  PubMed  CAS  Google Scholar 

  12. Parkin M, Hopwood S, Jones DA et al (2005) Dynamic changes in brain glucose and lactate in pericontusional areas of the human cerebral cortex, monitored with rapid sampling on-line microdialysis: relationship with depolarisation-like events. J Cereb Blood Flow Metab 25:402–413

    Article  PubMed  CAS  Google Scholar 

  13. Engstrom M, Polito A, Reinstrup P et al (2005) Intracerebral microdialysis in severe brain trauma: the importance of catheter location. J Neurosurg 102:460–469

    Article  PubMed  Google Scholar 

  14. Bellander BM, Cantais E, Enblad P et al (2004) Consensus meeting on microdialysis in neurointensive care. Intensive Care Med 30:2166–2169

    Article  PubMed  Google Scholar 

  15. Krebs-Kraft D, Frantz K, Parent M (2007) In vivo microdialysis: a method for sampling extracellular fluid in discrete brain regions. In: Lajtha A (ed) Handbook of neurochemistry and molecular neurobiology, practical neurochemistry methods. Springer, New York

    Google Scholar 

  16. Lonnroth P, Jansson PA, Smith U (1987) A microdialysis method allowing characterization of intercellular water space in humans. Am J Physiol 253:E228–E231

    PubMed  CAS  Google Scholar 

  17. Goodman JC, Robertson CS (2009) Microdialysis: is it ready for prime time? Curr Opin Crit Care 15:110–117

    Article  PubMed  Google Scholar 

  18. Tisdall MM, Smith M (2006) Cerebral microdialysis: research technique or clinical tool. Br J Anaesth 97:18–25

    Article  PubMed  CAS  Google Scholar 

  19. Hillered L, Persson L, Nilsson P et al (2006) Continuous monitoring of cerebral metabolism in traumatic brain injury: a focus on cerebral microdialysis. Curr Opin Crit Care 12:112–118

    Article  PubMed  Google Scholar 

  20. Hlatky R, Valadka AB, Goodman JC et al (2004) Patterns of energy substrates during ischemia measured in the brain by microdialysis. J Neurotrauma 21:894–906

    Article  PubMed  Google Scholar 

  21. Vespa P, Bergsneider M, Hattori N et al (2005) Metabolic crisis without brain ischemia is common after traumatic brain injury: a combined microdialysis and positron emission tomography study. J Cereb Blood Flow Metab 25:763–774

    Article  PubMed  CAS  Google Scholar 

  22. Persson L, Hillered L (1992) Chemical monitoring of neurosurgical intensive care patients using intracerebral microdialysis. J Neurosurg 76:72–80

    Article  PubMed  CAS  Google Scholar 

  23. Hutchinson PJ, Gupta AK, Fryer TF et al (2002) Correlation between cerebral blood flow, substrate delivery, and metabolism in head injury: a combined microdialysis and triple oxygen positron emission tomography study. J Cereb Blood Flow Metab 22:735–745

    Article  PubMed  Google Scholar 

  24. Stahl N, Mellergard P, Hallstrom A et al (2001) Intracerebral microdialysis and bedside biochemical analysis in patients with fatal traumatic brain lesions. Acta Anaesthesiol Scand 45:977–985

    Article  PubMed  CAS  Google Scholar 

  25. Persson L, Valtysson J, Enblad P et al (1996) Neurochemical monitoring using intracerebral microdialysis in patients with subarachnoid hemorrhage. J Neurosurg 84:606–616

    Article  PubMed  CAS  Google Scholar 

  26. Johnston AJ, Steiner LA, Coles JP et al (2005) Effect of cerebral perfusion pressure augmentation on regional oxygenation and metabolism after head injury. Crit Care Med 33:189–195

    Article  PubMed  Google Scholar 

  27. Hutchinson PJ, Al-Rawi PG, O’Connell MT et al (2000) Biochemical changes related to hypoxia during cerebral aneurysm surgery: combined microdialysis and tissue oxygen monitoring: case report. Neurosurgery 46:201–205

    Article  PubMed  CAS  Google Scholar 

  28. Vespa PM, McArthur D, O’Phelan K et al (2003) Persistently low extracellular glucose correlates with poor outcome 6 months after human traumatic brain injury despite a lack of increased lactate: a microdialysis study. J Cereb Blood Flow Metab 23:865–877

    Article  PubMed  CAS  Google Scholar 

  29. Kett-White R, Hutchinson PJ, Al-Rawi PG et al (2002) Adverse cerebral events detected after subarachnoid hemorrhage using brain oxygen and microdialysis probes. Neurosurgery 50:1213–1221

    PubMed  Google Scholar 

  30. Schulz MK, Wang LP, Tange M, Bjerre P (2000) Cerebral microdialysis monitoring: determination of normal and ischemic cerebral metabolisms in patients with aneurysmal subarachnoid hemorrhage. J Neurosurg 93:808–814

    Article  PubMed  CAS  Google Scholar 

  31. Hillered L, Valtysson J, Enblad P, Persson L (1998) Interstitial glycerol as a marker for membrane phospholipid degradation in the acutely injured human brain. J Neurol Neurosurg Psychiatry 64:486–491

    Article  PubMed  CAS  Google Scholar 

  32. Reinstrup P, Stahl N, Mellergard P et al (2000) Intracerebral microdialysis in clinical practice: baseline values for chemical markers during wakefulness, anesthesia, and neurosurgery. Neurosurgery 47:701–709

    PubMed  CAS  Google Scholar 

  33. Clausen T, Alves OL, Reinert M et al (2005) Association between elevated brain tissue glycerol levels and poor outcome following severe traumatic brain injury. J Neurosurg 103:233–238

    Article  PubMed  CAS  Google Scholar 

  34. Marklund N, Salci K, Lewen A, Hillered L (1997) Glycerol as a marker for post-traumatic membrane phospholipid degradation in rat brain. Neuroreport 8:1457–1461

    Article  PubMed  CAS  Google Scholar 

  35. Bullock R, Zauner A, Myseros JS et al (1995) Evidence for prolonged release of excitatory amino acids in severe human head trauma. Relationship to clinical events. Ann N Y Acad Sci 765:290–297

    Article  PubMed  CAS  Google Scholar 

  36. Rothman S (1984) Synaptic release of excitatory amino acid neurotransmitter mediates anoxic neuronal death. J Neurosci 4:1884–1891

    PubMed  CAS  Google Scholar 

  37. Obrenovitch TP (1999) High extracellular glutamate and neuronal death in neurological disorders. Cause, contribution or consequence? Ann N Y Acad Sci 890:273–286

    Article  PubMed  CAS  Google Scholar 

  38. Koura SS, Doppenberg EM, Marmarou A et al (1998) Relationship between excitatory amino acid release and outcome after severe human head injury. Acta Neurochir Suppl 71:244–246

    PubMed  CAS  Google Scholar 

  39. Runnerstam M, von EC, Nystrom B et al (1997) Extracellular glial fibrillary acidic protein and amino acids in brain regions of patients with subarachnoid hemorrhage–correlation with level of consciousness and site of bleeding. Neurol Res 19:361–368

    PubMed  CAS  Google Scholar 

  40. Staub F, Graf R, Gabel P et al (2000) Multiple interstitial substances measured by microdialysis in patients with subarachnoid hemorrhage. Neurosurgery 47:1106–1115

    Article  PubMed  CAS  Google Scholar 

  41. Teasdale GM, Graham DI (1998) Craniocerebral trauma: protection and retrieval of the neuronal population after injury. Neurosurgery 43:723–737

    Article  PubMed  CAS  Google Scholar 

  42. Langlois JA, Rutland-Brown W, Wald MM (2006) The epidemiology and impact of traumatic brain injury: a brief overview. J Head Trauma Rehabil 21:375–378

    Article  PubMed  Google Scholar 

  43. Tisdall MM, Smith M (2007) Multimodal monitoring in traumatic brain injury: current status and future directions. Br J Anaesth 99:61–67

    Article  PubMed  CAS  Google Scholar 

  44. Goodman JC, Valadka AB, Gopinath SP et al (1999) Extracellular lactate and glucose alterations in the brain after head injury measured by microdialysis. Crit Care Med 27:1965–1973

    Article  PubMed  CAS  Google Scholar 

  45. Hutchinson PJ, Al-Rawi PG, O’Connell MT et al (2000) On-line monitoring of substrate delivery and brain metabolism in head injury. Acta Neurochir Suppl 76:431–435

    PubMed  CAS  Google Scholar 

  46. Zauner A, Doppenberg EM, Woodward JJ et al (1997) Continuous monitoring of cerebral substrate delivery and clearance: initial experience in 24 patients with severe acute brain injuries. Neurosurgery 41:1082–1091

    Article  PubMed  CAS  Google Scholar 

  47. Belli A, Sen J, Petzold A et al (2008) Metabolic failure precedes intracranial pressure rises in traumatic brain injury: a microdialysis study. Acta Neurochir (Wien) 150:461–469

    Article  CAS  Google Scholar 

  48. Marcoux J, McArthur DA, Miller C et al (2008) Persistent metabolic crisis as measured by elevated cerebral microdialysis lactate-pyruvate ratio predicts chronic frontal lobe brain atrophy after traumatic brain injury. Crit Care Med 36:2871–2877

    Article  PubMed  CAS  Google Scholar 

  49. Nordstrom CH, Reinstrup P, Xu W et al (2003) Assessment of the lower limit for cerebral perfusion pressure in severe head injuries by bedside monitoring of regional energy metabolism. Anesthesiology 98:809–814

    Article  PubMed  Google Scholar 

  50. Vespa PM, O’Phelan K, McArthur D et al (2007) Pericontusional brain tissue exhibits persistent elevation of lactate/pyruvate ratio independent of cerebral perfusion pressure. Crit Care Med 35:1153–1160

    Article  PubMed  Google Scholar 

  51. Diaz-Parejo P, Stahl N, Xu W et al (2003) Cerebral energy metabolism during transient hyperglycemia in patients with severe brain trauma. Intensive Care Med 29:544–550

    PubMed  Google Scholar 

  52. Kerner A, Schlenk F, Sakowitz O et al (2007) Impact of hyperglycemia on neurological deficits and extracellular glucose levels in aneurysmal subarachnoid hemorrhage patients. Neurol Res 29:647–653

    Article  PubMed  CAS  Google Scholar 

  53. Vespa P, Boonyaputthikul R, McArthur DL et al (2006) Intensive insulin therapy reduces microdialysis glucose values without altering glucose utilization or improving the lactate/pyruvate ratio after traumatic brain injury. Crit Care Med 34:850–856

    Article  PubMed  CAS  Google Scholar 

  54. Oddo M, Schmidt JM, Carrera E et al (2008) Impact of tight glycemic control on cerebral glucose metabolism after severe brain injury: a microdialysis study. Crit Care Med 36:3233–3238

    Article  PubMed  CAS  Google Scholar 

  55. Oddo M, Schmidt JM, Mayer SA, Chiolero RL (2008) Glucose control after severe brain injury. Curr Opin Clin Nutr Metab Care 11:134–139

    Article  PubMed  Google Scholar 

  56. Wang Q, Li AL, Zhi DS, Huang HL (2007) Effect of mild hypothermia on glucose metabolism and glycerol of brain tissue in patients with severe traumatic brain injury. Chin J Traumatol 10:246–249

    PubMed  Google Scholar 

  57. Vespa PM, Miller C, McArthur D et al (2007) Nonconvulsive electrographic seizures after traumatic brain injury result in a delayed, prolonged increase in intracranial pressure and metabolic crisis. Crit Care Med 35:2830–2836

    Article  PubMed  Google Scholar 

  58. Hartings JA, Strong AJ, Fabricius M et al (2009) Spreading depolarizations and late secondary insults after traumatic brain injury. J Neurotrauma 26:1857–1866

    Article  PubMed  Google Scholar 

  59. Feuerstein D, Manning A, Hashemi P et al (2010) Dynamic metabolic response to multiple spreading depolarizations in patients with acute brain injury: an online microdialysis study. J Cereb Blood Flow Metab 30:1343–1355

    Article  PubMed  CAS  Google Scholar 

  60. Timofeev I, Carpenter KL, Nortje J et al (2011) Cerebral extracellular chemistry and outcome following traumatic brain injury: a microdialysis study of 223 patients. Brain 134:484–494

    Article  PubMed  Google Scholar 

  61. Zetterling M, Hallberg L, Hillered L et al (2010) Brain energy metabolism in patients with spontaneous subarachnoid hemorrhage and global cerebral edema. Neurosurgery 66:1102–1110

    Article  PubMed  Google Scholar 

  62. Cesarini KG, Enblad P, Ronne-Engstrom E et al (2002) Early cerebral hyperglycolysis after subarachnoid haemorrhage correlates with favourable outcome. Acta Neurochir (Wien) 144:1121–1131

    Article  CAS  Google Scholar 

  63. Sarrafzadeh AS, Haux D, Ludemann L et al (2004) Cerebral ischemia in aneurysmal subarachnoid hemorrhage: a correlative microdialysis-PET study. Stroke 35:638–643

    Article  PubMed  Google Scholar 

  64. Nilsson OG, Brandt L, Ungerstedt U, Saveland H (1999) Bedside detection of brain ischemia using intracerebral microdialysis: subarachnoid hemorrhage and delayed ischemic deterioration. Neurosurgery 45:1176–1184

    Article  PubMed  CAS  Google Scholar 

  65. Skjoth-Rasmussen J, Schulz M, Kristensen SR, Bjerre P (2004) Delayed neurological deficits detected by an ischemic pattern in the extracellular cerebral metabolites in patients with aneurysmal subarachnoid hemorrhage. J Neurosurg 100:8–15

    Article  PubMed  CAS  Google Scholar 

  66. Thomas PM, Phillips JP, Delanty N, O’Connor WT (2003) Elevated extracellular levels of glutamate, aspartate and gamma-aminobutyric acid within the intraoperative, spontaneously epileptiform human hippocampus. Epilepsy Res 54:73–79

    Article  PubMed  CAS  Google Scholar 

  67. During MJ, Spencer DD (1993) Extracellular hippocampal glutamate and spontaneous seizure in the conscious human brain. Lancet 341:1607–1610

    Article  PubMed  CAS  Google Scholar 

  68. During MJ, Fried I, Leone P et al (1994) Direct measurement of extracellular lactate in the human hippocampus during spontaneous seizures. J Neurochem 62:2356–2361

    Article  PubMed  CAS  Google Scholar 

  69. Clinckers R, Smolders I, Vermoesen K et al (2009) Prediction of antiepileptic drug efficacy: the use of intracerebral microdialysis to monitor biophase concentrations. Expert Opin Drug Metab Toxicol 5:1267–1277

    Article  PubMed  CAS  Google Scholar 

  70. Helmy A, Carpenter KL, Menon DK et al (2011) The cytokine response to human traumatic brain injury: temporal profiles and evidence for cerebral parenchymal production. J Cereb Blood Flow Metab 31:658–670

    Article  PubMed  CAS  Google Scholar 

  71. Sen J, Belli A, Petzold A et al (2005) Extracellular fluid S100B in the injured brain: a future surrogate marker of acute brain injury? Acta Neurochir (Wien) 147:897–900

    Article  CAS  Google Scholar 

  72. Carpenter KL, Timofeev I, Al-Rawi PG et al (2008) Nitric oxide in acute brain injury: a pilot study of NO(x) concentrations in human brain microdialysates and their relationship with energy metabolism. Acta Neurochir Suppl 102:207–213

    Article  PubMed  Google Scholar 

  73. Hlatky R, Goodman JC, Valadka AB, Robertson CS (2003) Role of nitric oxide in cerebral blood flow abnormalities after traumatic brain injury. J Cereb Blood Flow Metab 23:582–588

    Article  PubMed  CAS  Google Scholar 

  74. Hutchinson PJ, O’Connell MT, Al-Rawi PG et al (2002) Increases in GABA concentrations during cerebral ischaemia: a microdialysis study of extracellular amino acids. J Neurol Neurosurg Psychiatry 72:99–105

    Article  PubMed  CAS  Google Scholar 

  75. Belli A, Sen J, Petzold A et al (2006) Extracellular N-acetylaspartate depletion in traumatic brain injury. J Neurochem 96:861–869

    Article  PubMed  CAS  Google Scholar 

  76. Cuadrado E, Rosell A, Colome N et al (2010) The proteome of human brain after ischemic stroke. J Neuropathol Exp Neurol 69:1105–1115

    Article  PubMed  CAS  Google Scholar 

  77. Lakshmanan R, Loo JA, Drake T et al (2010) Metabolic crisis after traumatic brain injury is associated with a novel microdialysis proteome. Neurocrit Care 12:324–336

    Article  PubMed  CAS  Google Scholar 

  78. Maurer MH, Haux D, Sakowitz OW et al (2007) Identification of early markers for symptomatic vasospasm in human cerebral microdialysate after subarachnoid hemorrhage: preliminary results of a proteome-wide screening. J Cereb Blood Flow Metab 27:1675–1683

    Article  PubMed  CAS  Google Scholar 

  79. Helmy A, Carpenter KL, Hutchinson PJ (2007) Microdialysis in the human brain and its potential role in the development and clinical assessment of drugs. Curr Med Chem 14:1525–1537

    Article  PubMed  CAS  Google Scholar 

  80. Zamboni WC, Gervais AC, Egorin MJ et al (2002) Inter- and intratumoral disposition of platinum in solid tumors after administration of cisplatin. Clin Cancer Res 8:2992–2999

    PubMed  CAS  Google Scholar 

  81. Blakeley J, Portnow J (2010) Microdialysis for assessing intratumoral drug disposition in brain cancers: a tool for rational drug development. Expert Opin Drug Metab Toxicol 6:1477–1491

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

M.S. is partly funded by the Department of Health’s National Institute for Health Research funding scheme via the UCLH/UCL Biomedical Research Centre.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Smith .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Borg, A., Smith, M. (2013). Cerebral Microdialysis: Research Technique or Clinical Tool?. In: Di Giovanni, G., Di Matteo, V. (eds) Microdialysis Techniques in Neuroscience. Neuromethods, vol 75. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-173-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-173-8_1

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-172-1

  • Online ISBN: 978-1-62703-173-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics