Skip to main content

Dictyostelium Host Response to Legionella Infection: Strategies and Assays

  • Protocol
  • First Online:
Legionella

Part of the book series: Methods in Molecular Biology ((MIMB,volume 954))

Abstract

The professional phagocyte Dictyostelium discoideum is a simple eukaryotic microorganism, whose natural habitat is deciduous forest soil and decaying leaves, where the amoebae feed on bacteria and grow as separate, independent, single cells. In the last decade, the organism has been successfully used as a host for several human pathogens, including Legionella pneumophila, Mycobacterium avium and Mycobacterium marinum,Pseudomonas aeruginosa, Klebsiella pneumoniae, Cryptococcus neoformans, and Salmonella typhimurium. To dissect the complex cross-talk between host and pathogen Dictyostelium offers easy cultivation, a high quality genome sequence and excellent molecular genetic and biochemical tools. Dictyostelium cells are also extremely suitable for cell biological studies, which in combination with in vivo expression of fluorescence-tagged proteins allow investigating the dynamics of bacterial uptake and infection. Inactivation of genes by homologous recombination as well as gene rescue and overexpression are well established and a large mutant collection is available at the Dictyostelium stock center, favoring identification of host resistance or susceptibility genes. Here, we briefly introduce the organism, address the value of Dictyostelium as model host, describe strategies to identify host cell factors important for infection followed by protocols for cell culture and storage, uptake and infection, and confocal microscopy of infected cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Williams RS, Boeckeler K, Graf R et al (2006) Towards a molecular understanding of human diseases using Dictyostelium discoideum. Trends Mol Med 12:415–424

    Article  PubMed  CAS  Google Scholar 

  2. Williams JG (2010) Dictyostelium finds new roles to model. Genetics 185:717–726

    Article  PubMed  CAS  Google Scholar 

  3. Kessin RH (2001) Dictyostelium—evolution, cell biology, and the development of multicellularity. Cambridge University Press, Cambridge

    Book  Google Scholar 

  4. Eichinger L (2003) Revamp a model-status and prospects of the Dictyostelium genome project. Curr Genet 44:59–72

    Article  PubMed  CAS  Google Scholar 

  5. Chisholm RL, Firtel RA (2004) Insights into morphogenesis from a simple developmental system. Nat Rev Mol Cell Biol 5:531–541

    Article  PubMed  CAS  Google Scholar 

  6. Eichinger L, Lee SS, Schleicher M (1999) Dictyostelium as model system for studies of the actin cytoskeleton by molecular genetics. Microsc Res Tech 47:124–134

    Article  PubMed  CAS  Google Scholar 

  7. Eichinger L, Rivero F (2006) Methods in molecular biology—Dictyostelium discoideum protocols. Humana, Totowa, NJ

    Google Scholar 

  8. Faix J, Kreppel L, Shaulsky G et al (2004) A rapid and efficient method to generate multiple gene disruptions in Dictyostelium discoideum using a single selectable marker and the Cre-loxP system. Nucleic Acids Res 32:e143

    Article  PubMed  Google Scholar 

  9. Hoeller O, Kay RR (2007) Chemotaxis in the absence of PIP3 gradients. Curr Biol 17:813–817

    Article  PubMed  CAS  Google Scholar 

  10. Kuhlmann M, Popova B, Nellen W (2006) RNA interference and antisense-mediated gene silencing in Dictyostelium. Methods Mol Biol 346:211–226

    PubMed  Google Scholar 

  11. Kuspa A, Loomis WF (1992) Tagging developmental genes in Dictyostelium by restriction enzyme-mediated integration of plasmid DNA. Proc Natl Acad Sci USA 89:8803–8807

    Article  PubMed  CAS  Google Scholar 

  12. Temesvari L, Zhang L, Fodera B et al (2000) Inactivation of lmpA, encoding a LIMPII-related endosomal protein, suppresses the internalization and endosomal trafficking defects in profilin-null mutants. Mol Biol Cell 11:2019–2031

    PubMed  CAS  Google Scholar 

  13. Kuspa A (2006) Restriction enzyme-mediated integration (REMI) mutagenesis. Methods Mol Biol 346:201–209

    PubMed  CAS  Google Scholar 

  14. Robinson DN, Spudich JA (2000) Dynacortin, a genetic link between equatorial contractility and global shape control discovered by library complementation of a Dictyostelium discoideum cytokinesis mutant. J Cell Biol 150:823–838

    Article  PubMed  CAS  Google Scholar 

  15. Bozzaro S, Bucci C, Steinert M (2008) Phagocytosis and host-pathogen interactions in Dictyostelium with a look at macrophages. Int Rev Cell Mol Biol 271:253–300

    Article  PubMed  CAS  Google Scholar 

  16. Dorer MS, Isberg RR (2006) Non-vertebrate hosts in the analysis of host-pathogen interactions. Microbes Infect 8:1637–1646

    Article  PubMed  CAS  Google Scholar 

  17. Jin T, Xu X, Fang J et al (2009) How human leukocytes track down and destroy pathogens: lessons learned from the model organism Dictyostelium discoideum. Immunol Res 43:118–127

    Article  PubMed  Google Scholar 

  18. Mylonakis E, Ausubel FM, Tang RJ et al (2003) The art of serendipity: killing of Caenorhabditis elegans by human pathogens as a model of bacterial and fungal pathogenesis. Expert Rev Anti Infect Ther 1:167–173

    Article  PubMed  Google Scholar 

  19. Cosson P, Soldati T (2008) Eat, kill or die: when amoeba meets bacteria. Curr Opin Microbiol 11:271–276

    Article  PubMed  CAS  Google Scholar 

  20. Depraitere C, Darmon M (1978) Growth of “Dictyostelium discoideum” on different species of bacteria (author’s transl). Ann Microbiol (Paris) 129B:451–461

    Google Scholar 

  21. Hägele S, Kohler R, Merkert H et al (2000) Dictyostelium discoideum: a new host model system for intracellular pathogens of the genus Legionella. Cell Microbiol 2:165–171

    Article  PubMed  Google Scholar 

  22. Solomon JM, Rupper A, Cardelli JA et al (2000) Intracellular growth of Legionella pneumophila in Dictyostelium discoideum, a system for genetic analysis of host-pathogen interactions. Infect Immun 68:2939–2947

    Article  PubMed  CAS  Google Scholar 

  23. Solomon JM, Isberg RR (2000) Growth of Legionella pneumophila in Dictyostelium discoideum: a novel system for genetic analysis of host-pathogen interactions. Trends Microbiol 8:478–480

    Article  PubMed  CAS  Google Scholar 

  24. Roy CR, Berger KH, Isberg RR (1998) Legionella pneumophila DotA protein is required for early phagosome trafficking decisions that occur within minutes of bacterial uptake. Mol Microbiol 28:663–674

    Article  PubMed  CAS  Google Scholar 

  25. Wiater LA, Dunn K, Maxfield FR et al (1998) Early events in phagosome establishment are required for intracellular survival of Legionella pneumophila. Infect Immun 66:4450–4460

    PubMed  CAS  Google Scholar 

  26. Hagedorn M, Rohde KH, Russell DG et al (2009) Infection by tubercular mycobacteria is spread by nonlytic ejection from their amoeba hosts. Science 323:1729–1733

    Article  PubMed  CAS  Google Scholar 

  27. Bozzaro S, Eichinger L (2011) The professional phagocyte Dictyostelium discoideum as a model host for bacterial pathogens. Curr Drug Targets 12:942–954

    Article  PubMed  CAS  Google Scholar 

  28. Sillo A, Matthias J, Konertz R et al (2011) Salmonella typhimurium is pathogenic for Dictyostelium cells and subverts the starvation response. Cell Microbiol 13:1793–1811

    Article  PubMed  CAS  Google Scholar 

  29. Lima WC, Lelong E, Cosson P (2011) What can Dictyostelium bring to the study of Pseudomonas infections? Semin Cell Dev Biol 22:77–81

    Article  PubMed  CAS  Google Scholar 

  30. Hilbi H, Weber SS, Ragaz C et al (2007) Environmental predators as models for ­bacterial pathogenesis. Environ Microbiol 9:563–575

    Article  PubMed  CAS  Google Scholar 

  31. Isberg RR, O’connor TJ, Heidtman M (2009) The Legionella pneumophila replication vacuole: making a cosy niche inside host cells. Nat Rev Microbiol 7:12–24

    Article  Google Scholar 

  32. Clarke M (2010) Recent insights into host-pathogen interactions from Dictyostelium. Cell Microbiol 12:283–291

    Article  PubMed  CAS  Google Scholar 

  33. Steinert M (2011) Pathogen-host interactions in Dictyostelium, Legionella, Mycobacterium and other pathogens. Semin Cell Dev Biol 22:70–76

    Article  PubMed  CAS  Google Scholar 

  34. Maniak M (2011) Dictyostelium as a model for human lysosomal and trafficking diseases. Semin Cell Dev Biol 22:114–1149

    Article  PubMed  CAS  Google Scholar 

  35. Lu H, Clarke M (2005) Dynamic properties of Legionella-containing phagosomes in Dictyostelium amoebae. Cell Microbiol 7:995–1007

    Article  PubMed  CAS  Google Scholar 

  36. Fajardo M, Schleicher M, Noegel A et al (2004) Calnexin, calreticulin and cytoskeleton-associated proteins modulate uptake and growth of Legionella pneumophila in Dictyostelium discoideum. Microbiology 150:2825–2835

    Article  PubMed  CAS  Google Scholar 

  37. Eichinger L, Pachebat JA, Glockner G et al (2005) The genome of the social amoeba Dictyostelium discoideum. Nature 435:43–57

    Article  PubMed  CAS  Google Scholar 

  38. Farbrother P, Wagner C, Na J et al (2006) Dictyostelium transcriptional host cell response upon infection with Legionella. Cell Microbiol 8:438–456

    Article  PubMed  CAS  Google Scholar 

  39. Li Z, Dugan AS, Bloomfield G et al (2009) The amoebal MAP kinase response to Legionella pneumophila is regulated by DupA. Cell Host Microbe 6:253–267

    Article  PubMed  CAS  Google Scholar 

  40. Shevchuk O, Batzilla C, Hagele S et al (2009) Proteomic analysis of Legionella-containing phagosomes isolated from Dictyostelium. Int J Med Microbiol 299:489–508

    Article  PubMed  CAS  Google Scholar 

  41. Urwyler S, Nyfeler Y, Ragaz C et al (2009) Proteome analysis of Legionella vacuoles purified by magnetic immunoseparation reveals secretory and endosomal GTPases. Traffic 10:76–87

    Article  PubMed  CAS  Google Scholar 

  42. Weber SS, Ragaz C, Hilbi H (2009) The inositol polyphosphate 5-phosphatase OCRL1 restricts intracellular growth of Legionella, localizes to the replicative vacuole and binds to the bacterial effector LpnE. Cell Microbiol 11:442–460

    Article  PubMed  CAS  Google Scholar 

  43. Weber SS, Ragaz C, Reus K et al (2006) Legionella pneumophila exploits PI(4)P to anchor secreted effector proteins to the replicative vacuole. PLoS Pathog 2:e46

    Article  PubMed  Google Scholar 

  44. Brombacher E, Urwyler S, Ragaz C et al (2009) Rab1 guanine nucleotide exchange ­factor SidM is a major phosphatidylinositol 4-phosphate-binding effector protein of Legionella pneumophila. J Biol Chem 284:4846–4856

    Article  PubMed  CAS  Google Scholar 

  45. Hilbi H, Weber S, Finsel I (2011) Anchors for effectors: subversion of phosphoinositide lipids by legionella. Front Microbiol 2:91

    PubMed  CAS  Google Scholar 

  46. Deretic V (2005) Autophagy in innate and adaptive immunity. Trends Immunol 26:523–528

    Article  PubMed  CAS  Google Scholar 

  47. Orvedahl A, Levine B (2009) Eating the enemy within: autophagy in infectious diseases. Cell Death Differ 16:57–69

    Article  PubMed  CAS  Google Scholar 

  48. Deretic V, Levine B (2009) Autophagy, immunity, and microbial adaptations. Cell Host Microbe 5:527–549

    Article  PubMed  CAS  Google Scholar 

  49. Tung SM, Unal C, Ley A et al (2010) Loss of Dictyostelium ATG9 results in a pleiotropic phenotype affecting growth, development, phagocytosis and clearance and replication of Legionella pneumophila. Cell Microbiol 12:765–780

    Article  PubMed  CAS  Google Scholar 

  50. Jia K, Thomas C, Akbar M et al (2009) Autophagy genes protect against Salmonella typhimurium infection and mediate insulin signaling-regulated pathogen resistance. Proc Natl Acad Sci USA 106:14564–14569

    Article  PubMed  CAS  Google Scholar 

  51. Raper KB (1951) Isolation, cultivation, and conservation of simple slime molds. Q Rev Biol 26:169–190

    Article  PubMed  CAS  Google Scholar 

  52. Gerisch G (1960) Zellfunktionen und zellfunktionswechsel in der entwicklung von Dictyostelium discoideum I. Zellagglutination und induktion der fruchtkoerperpolaritaet. Roux Arch Entw Mech Organ 152:632–654

    Article  Google Scholar 

  53. Sussman M (1966) Biochemical and genetic methods in the study of cellular slime mold development. In: Prescott D (ed) Methods in cell physiology. Academic, New York, pp 397–409

    Google Scholar 

  54. Watts DJ, Ashworth JM (1970) Growth of myxameobae of the cellular slime mould Dictyostelium discoideum in axenic culture. Biochem J 119:171–174

    PubMed  CAS  Google Scholar 

  55. Loomis WF Jr (1971) Sensitivity of Dictyostelium discoideum to nucleic acid analogues. Exp Cell Res 64:484–486

    Article  PubMed  CAS  Google Scholar 

  56. Hacker U, Albrecht R, Maniak M (1997) Fluid-phase uptake by macropinocytosis in Dictyostelium. J Cell Sci 110(Pt 2):105–112

    PubMed  CAS  Google Scholar 

  57. Sussman M (1987) Cultivation and synchronous morphogenesis of Dictyostelium under controlled experimental conditions. Methods Cell Biol 28:9–29

    Article  PubMed  CAS  Google Scholar 

  58. Laine J, Roxby N, Coukell MB (1975) A simple method for storing cellular slime mold amoebae. Can J Microbiol 21:959–962

    Article  PubMed  CAS  Google Scholar 

  59. Peracino B, Balest A, Bozzaro S (2010) Phosphoinositides differentially regulate bacterial uptake and Nramp1-induced resistance to Legionella infection in Dictyostelium. J Cell Sci 123:4039–4051

    Article  PubMed  CAS  Google Scholar 

  60. Hilbi H, Segal G, Shuman HA (2001) Icm/dot-dependent upregulation of phagocytosis by Legionella pneumophila. Mol Microbiol 42:603–617

    Article  PubMed  CAS  Google Scholar 

  61. Peracino B, Wagner C, Balest A et al (2006) Function and mechanism of action of Dictyostelium Nramp1 (Slc11a1) in bacterial infection. Traffic 7:22–38

    Article  PubMed  CAS  Google Scholar 

  62. Solomon JM, Leung GS, Isberg RR (2003) Intracellular replication of Mycobacterium marinum within Dictyostelium discoideum: efficient replication in the absence of host coronin. Infect Immun 71:3578–3586

    Article  PubMed  CAS  Google Scholar 

  63. Shina MC, Unal C, Eichinger L et al (2010) A Coronin7 homolog with functions in actin-driven processes. J Biol Chem 285:9249–9261

    Article  PubMed  CAS  Google Scholar 

  64. Schreiner T, Mohrs MR, Blau-Wasser R et al (2002) Loss of the F-actin binding and vesicle-associated protein comitin leads to a phagocytosis defect. Eukaryot Cell 1:906–914

    Article  PubMed  CAS  Google Scholar 

  65. Balest A, Peracino B, Bozzaro S (2011). Legionella pneumohila infection is enhanced in a Rac-H null mutant of Dictyostelium. Commun Integr Biol 4: 194-197

    Article  PubMed  CAS  Google Scholar 

  66. Li Z, Solomon JM, Isberg RR (2005) Dictyostelium discoideum strains lacking the RtoA protein are defective for maturation of the Legionella pneumophila replication vacuole. Cell Microbiol 7:431–442

    Article  PubMed  CAS  Google Scholar 

  67. Chen G, Zhuchenko O, Kuspa A (2007) Immune-like phagocyte activity in the social amoeba. Science 317:678–681

    Article  PubMed  CAS  Google Scholar 

  68. Francione L, Smith PK, Accari SL et al (2009) Legionella pneumophila multiplication is enhanced by chronic AMPK signalling in mitochondrially diseased Dictyostelium cells. Dis Model Mech 2:479–489

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Region Piemonte (SB), and the Deutsche Forschungsgemeinschaft (SFB 670, Innate Immunity) and Köln Fortune (LE).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salvatore Bozzaro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this protocol

Cite this protocol

Bozzaro, S., Peracino, B., Eichinger, L. (2013). Dictyostelium Host Response to Legionella Infection: Strategies and Assays. In: Buchrieser, C., Hilbi, H. (eds) Legionella. Methods in Molecular Biology, vol 954. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-161-5_26

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-161-5_26

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-160-8

  • Online ISBN: 978-1-62703-161-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics