Skip to main content
Book cover

Legionella pp 197–212Cite as

Constructing Unmarked Gene Deletions in Legionella pneumophila

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 954))

Abstract

The ability to construct recombinant alleles efficiently in strains of interest, particularly unmarked deletions that reduce the potential for polar effects, is essential to studies of both pathogenesis and basic bacterial physiology. Here we describe a three-phase approach for generating unmarked deletions in Legionella pneumophila by constructing a mutant allele in E. coli using λ-Red recombination, so-called recombineering; transferring the allele onto the L. pneumophila chromosome by natural transformation; and then removing the selectable marker by utilizing the Flp site-specific recombinase. This strategy can decrease the amount of clone screening required while also increasing the percentage of the time the desired allele is obtained on the first attempt. The approach is particularly suited for constructing multiple unmarked deletions in a single strain in fewer steps than traditional methods.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Heckman KL, Pease LR (2007) Gene splicing and mutagenesis by PCR-driven overlap extension. Nat Protoc 2:924–932

    Article  PubMed  CAS  Google Scholar 

  2. Horton RM, Hunt HD, Ho SN, Pullen JK, Pease LR (1989) Engineering hybrid genes without the use of restriction enzymes: gene splicing by overlap extension. Gene 77:61–68

    Article  PubMed  CAS  Google Scholar 

  3. Ho SN, Hunt HD, Horton RM, Pullen JK, Pease LR (1989) Site-directed mutagenesis by overlap extension using the polymerase chain reaction. Gene 77:51–59

    Article  PubMed  CAS  Google Scholar 

  4. Yu D, Ellis HM, Lee EC, Jenkins NA, Copeland NG, Court DL (2000) An efficient recombination system for chromosome engineering in Escherichia coli. Proc Natl Acad Sci USA 97:5978–5983

    Article  PubMed  CAS  Google Scholar 

  5. Court DL, Sawitzke JA, Thomason LC (2002) Genetic engineering using homologous recombination. Annu Rev Genet 36:361–388

    Article  PubMed  CAS  Google Scholar 

  6. Thomason L, Court DL, Bubunenko M, Costantino N, Wilson H, Datta S, Oppenheim A (2007) Recombineering: genetic engineering in bacteria using homologous recombination. Curr Protoc Mol Biol 78:1.16.11–11.16.24

    Google Scholar 

  7. Thomason LC, Costantino N, Shaw DV, Court DL (2007) Multicopy plasmid modification with phage lambda red recombineering. Plasmid 58:148–158

    Article  PubMed  CAS  Google Scholar 

  8. Datsenko KA, Wanner BL (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci USA 97:6640–6645

    Article  PubMed  CAS  Google Scholar 

  9. Sharan SK, Thomason LC, Kuznetsov SG, Court DL (2009) Recombineering: a homologous recombination-based method of genetic engineering. Nat Protoc 4:206–223

    Article  PubMed  CAS  Google Scholar 

  10. Stone BJ, Kwaik YA (1999) Natural competence for DNA transformation by Legionella pneumophila and its association with expression of type IV pili. J Bacteriol 181:1395–1402

    PubMed  CAS  Google Scholar 

  11. Sexton JA, Vogel JP (2004) Regulation of hypercompetence in Legionella pneumophila. J Bacteriol 186:3814–3825

    Article  PubMed  CAS  Google Scholar 

  12. Bryan A, Harada K, Swanson MS (2011) Efficient generation of unmarked deletions in Legionella pneumophila. Appl Environ Microbiol 77:2545–2548

    Article  PubMed  CAS  Google Scholar 

  13. Bryan A, Swanson MS (2011) Oligonucleotides stimulate genomic alterations of Legionella pneumophila. Mol Microbiol 80:231–247

    Article  PubMed  CAS  Google Scholar 

  14. Reyrat JM, Pelicic V, Gicquel B, Rappuoli R (1998) Counterselectable markers: untapped tools for bacterial genetics and pathogenesis. Infect Immun 66:4011–4017

    PubMed  CAS  Google Scholar 

  15. Goodwin A, Kersulyte D, Sisson G, Veldhuyzen van Zanten SJ, Berg DE, Hoffman PS (1998) Metronidazole resistance in Helicobacter pylori is due to null mutations in a gene (rdxA) that encodes an oxygen-insensitive NADPH nitroreductase. Mol Microbiol 28:383–393

    Article  PubMed  CAS  Google Scholar 

  16. LeBlanc JJ, Davidson RJ, Hoffman PS (2006) Compensatory functions of two alkyl hydroperoxide reductases in the oxidative defense system of Legionella pneumophila. J Bacteriol 188:6235–6244

    Article  PubMed  CAS  Google Scholar 

  17. Ott M (1994) Genetic approaches to study Legionella pneumophila pathogenicity. FEMS Microbiol Rev 14:161–176

    Article  PubMed  CAS  Google Scholar 

  18. Merriam JJ, Mathur R, Maxfield-Boumil R, Isberg RR (1997) Analysis of the Legionella pneumophila fliI gene: intracellular growth of a defined mutant defective for flagellum biosynthesis. Infect Immun 65:2497–2501

    PubMed  CAS  Google Scholar 

  19. Berger KH, Isberg RR (1993) Two distinct defects in intracellular growth complemented by a single genetic locus in Legionella pneumophila. Mol Microbiol 7:7–19

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by University of Michigan, Department of Microbiology and Immunology, Novy Fellowship to A.B., and a Rackham Merit Fellowship to Z.D.A.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michele S. Swanson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this protocol

Cite this protocol

Bryan, A., Abbott, Z.D., Swanson, M.S. (2013). Constructing Unmarked Gene Deletions in Legionella pneumophila . In: Buchrieser, C., Hilbi, H. (eds) Legionella. Methods in Molecular Biology, vol 954. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-161-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-161-5_10

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-160-8

  • Online ISBN: 978-1-62703-161-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics