Skip to main content

Behavioral Paradigms to Evaluate PPAR Modulation in Animal Models of Brain Injury

  • Protocol
  • First Online:
  • 1835 Accesses

Part of the book series: Methods in Molecular Biology ((MIMB,volume 952))

Abstract

The use of behavioral testing has become an invaluable tool for assessing the efficacy of therapeutics for a variety of disorders of the central nervous system. This chapter will describe in detail several behavioral paradigms to evaluate the efficacy of PPAR agonists to modulate cognitive impairments in rodent models. When used together as a battery these procedures allow for a global assessment of cognition. These tests are explained in detail below, and include: (1) Novel Object Recognition (NOR), (2) Morris Water Maze (MWM), (3) Delay Match to Place (DMP), and (4) Cue Strategy.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Watson GS, Cholerton BA, Reger MA, Baker LD, Plymate SR, Asthana S, Fishel MA, Kulstad JJ, Green PS, Cook DG, Kahn SE, Keeling ML, Craft S (2005) Preserved cognition in patients with early Alzheimer disease and amnestic mild cognitive impairment during treatment with rosiglitazone: a preliminary study. Am J Geriatr Psychiatry 13:950–958

    PubMed  Google Scholar 

  2. Racke MK, Gocke AR, Muir M, Diab A, Drew PD, Lovett-Racke AE (2006) Nuclear receptors and autoimmune disease: the potential of PPAR agonists to treat multiple sclerosis. J Nutr 136:700–703

    PubMed  CAS  Google Scholar 

  3. Schmidt S, Moric E, Schmidt M, Sastre M, Feinstein DL, Heneka MT (2004) Anti-inflammatory and antiproliferative actions of PPAR-+¦ agonists on T lymphocytes derived from MS patients. J Leukoc Biol 75:478–485

    Article  PubMed  CAS  Google Scholar 

  4. Carta AR, Pisanu A, Carboni E (2011) Do PPAR-gamma agonists have a future in Parkinson’s disease therapy? Parkinsons Dis 2011:689181

    PubMed  Google Scholar 

  5. Chaturvedi RK, Beal MF (2008) PPAR: a therapeutic target in Parkinson’s disease. J Neurochem 106:506–518

    Article  PubMed  CAS  Google Scholar 

  6. Kumar P, Kaundal RK, More S, Sharma SS (2009) Beneficial effects of pioglitazone on cognitive impairment in MPTP model of Parkinson’s disease. Behav Brain Res 197:398–403

    Article  PubMed  CAS  Google Scholar 

  7. Schintu N, Frau L, Ibba M, Caboni P, Garau A, Carboni E, Carta AR (2009) PPAR-gamma-mediated neuroprotection in a chronic mouse model of Parkinson’s disease. Eur J Neurosci 29:954–963

    Article  PubMed  Google Scholar 

  8. Luna-Medina R, Cortes-Canteli M, Sanchez-Galiano S, Morales-Garcia JA, Martinez A, Santos A, Perez-Castillo A (2007) NP031112, a thiadiazolidinone compound, prevents inflammation and neurodegeneration under excitotoxic conditions: potential therapeutic role in brain disorders. J Neurosci 27:5766–5776

    Article  PubMed  CAS  Google Scholar 

  9. Glatz T, Stock I, Nguyen-Ngoc M, Gohlke P, Herdegen T, Culman J, Zhao Y (2010) Peroxisome-proliferator-activated receptors gamma and peroxisome-proliferator-activated receptors beta/delta and the regulation of interleukin 1 receptor antagonist expression by pioglitazone in ischaemic brain. J Hypertens 28:1488–1497

    Article  PubMed  CAS  Google Scholar 

  10. Huang W, Eum SY, Andras IE, Hennig B, Toborek M (2009) PPAR{alpha} and PPAR{gamma} attenuate HIV-induced dysregulation of tight junction proteins by modulations of matrix metalloproteinase and proteasome activities. FASEB J 23:1596–1606

    Article  PubMed  CAS  Google Scholar 

  11. Ramirez SH, Heilman D, Morsey B, Potula R, Haorah J, Persidsky Y (2008) Activation of peroxisome proliferator-activated receptor gamma (PPAR{gamma}) suppresses Rho GTPases in human brain microvascular endothelial cells and inhibits adhesion and transendothelial migration of HIV-1 infected monocytes. J Immunol 180:1854–1865

    PubMed  CAS  Google Scholar 

  12. Drukala J, Urbanska K, Wilk A, Grabacka M, Wybieralska E, Del Valle L, Madeja Z, Reiss K (2010) ROS accumulation and IGF-IR inhibition contribute to fenofibrate/PPARalpha -mediated inhibition of glioma cell motility in vitro. Mol Cancer 9:159

    Article  PubMed  Google Scholar 

  13. Reiss K, Urbanska K, DelValle L, Mencel PJ (2008) PPAR{alpha} agonist fenofibrate inhibits IGF-I - mediated growth and DNA repair responses and sensitizes human glioblastoma cells to cisplatin. ASCO Meeting Abstracts 26:13020

    Google Scholar 

  14. Ramanan S, Kooshki M, Zhao W, Hsu FC, Riddle DR, Robbins ME (2009) The PPARalpha agonist fenofibrate preserves hippocampal neurogenesis and inhibits microglial activation after whole-brain irradiation. Int J Radiat Oncol Biol Phys 75:870–877

    Article  PubMed  CAS  Google Scholar 

  15. Ramanan S, Kooshki M, Zhao W, Hsu FC, Robbins ME (2008) PPARalpha ligands inhibit radiation-induced microglial inflammatory responses by negatively regulating NF-kappaB and AP-1 pathways. Free Radic Biol Med 45:1695–1704

    Article  PubMed  CAS  Google Scholar 

  16. Dere E, Huston JP, De Souza Silva MA (2007) The pharmacology, neuroanatomy and neurogenetics of one-trial object recognition in rodents. Neurosci Biobehav Rev 31:673–704

    Article  PubMed  CAS  Google Scholar 

  17. Winters BD, Saksida LM, Bussey TJ (2008) Object recognition memory: neurobiological mechanisms of encoding, consolidation and retrieval. Neurosci Biobehav Rev 32:1055–1070

    Article  PubMed  Google Scholar 

  18. Morris R (1984) Developments of a water-maze procedure for studying spatial learning in the rat. J Neurosci Methods 11:47–60

    Article  PubMed  CAS  Google Scholar 

  19. Jr Terry AV (2009) Spatial navigation (water maze) tasks. In: Buccafusco JJ (ed) Methods of behavior analysis in neuroscience. CRC Press, Boca Raton

    Google Scholar 

  20. Da Cunha C, Wietzikoski S, Wietzikoski EC, Silva MH, Chandler J, Ferro MM, Andreatini R, Canteras NS (2007) Pre-training to find a hidden platform in the Morris water maze can compensate for a deficit to find a cued platform in a rat model of Parkinson’s disease. Neurobiol Learn Mem 87:451–463

    Article  PubMed  Google Scholar 

  21. Janus C (2004) Search strategies used by APP transgenic mice during navigation in the Morris water maze. Learn Mem 11:337–346

    Article  PubMed  Google Scholar 

  22. Scearce-Levie K (2011) Monitoring spatial learning and memory in Alzheimer’s disease mouse models using the Morris water maze. Methods Mol Biol 670:191–205

    Article  PubMed  Google Scholar 

  23. Raber J, Rola R, LeFevour A, Morhardt D, Curley J, Mizumatsu S, VandenBerg SR, Fike JR (2004) Radiation-induced cognitive impairments are associated with changes in indicators of hippocampal neurogenesis. Radiat Res 162:39–47

    Article  PubMed  CAS  Google Scholar 

  24. Hagan JJ, Jones DNC (2005) Predicting drug efficacy for cognitive deficits in schizophrenia. Schizophr Bull 31:830–853

    Article  PubMed  Google Scholar 

  25. Wisman LAB, Sahin G, Maingay M, Leanza G, Kirik D (2008) Functional convergence of dopaminergic and cholinergic input is critical for hippocampus-dependent working memory. J Neurosci 28:7797–7807

    Article  PubMed  CAS  Google Scholar 

  26. Rola R, Raber J, Rizk A, Otsuka S, VandenBerg SR, Morhardt DR, Fike JR (2004) Radiation-induced impairment of hippocampal neurogenesis is associated with cognitive deficits in young mice. Exp Neurol 188:316–330

    Article  PubMed  CAS  Google Scholar 

  27. Shi L, Adams MM, Long A, Carter CC, Bennett C, Sonntag WE, Nicolle MM, Robbins M, D’Agostino R, Brunso-Bechtold JK (2006) Spatial learning and memory deficits after whole-brain irradiation are associated with changes in NMDA receptor subunits in the hippocampus. Radiat Res 166:892–899

    Article  PubMed  CAS  Google Scholar 

  28. Shi L, Olson J, D’Agostino R, Linville C, Nicolle MM, Robbins ME, Wheeler KT, Brunso-Bechtold JK (2011) Aging masks detection of radiation-induced brain injury. Brain Res 1385:307–316

    Article  PubMed  CAS  Google Scholar 

  29. Steele RJ, Morris RG (1999) Delay-dependent impairment of a matching-to-place task with chronic and intrahippocampal infusion of the NMDA-antagonist D-AP5. Hippocampus 9:118–136

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Supported by National Institutes of Health grants CA112593 and CA113267.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mike E. Robbins .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this protocol

Cite this protocol

Greene-Schloesser, D., Schnegg, C.I., Robbins, M.E. (2013). Behavioral Paradigms to Evaluate PPAR Modulation in Animal Models of Brain Injury. In: Badr, M., Youssef, J. (eds) Peroxisome Proliferator-Activated Receptors (PPARs). Methods in Molecular Biology, vol 952. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-155-4_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-155-4_24

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-154-7

  • Online ISBN: 978-1-62703-155-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics