Skip to main content

Protocols for Growing Plant Symbioses; Mycorrhiza

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 953))

Abstract

Arbuscular mycorrhizal symbiosis is receiving increased attention as a potential contributor to sustainable crop plant nutrition. This chapter details a set of protocols for plant growth to study the development and physiology of the arbuscular mycorrhizal symbiosis, and how to establish root organ cultures for the production of axenic inoculum.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Smith FA, Smith SE (2011) What is the significance of the arbuscular mycorrhizal colonisation of many economically important crop plants? Plant Soil 348:63–79

    Article  CAS  Google Scholar 

  2. Ercolin F, Reinhardt D (2011) Successful joint ventures of plants: arbuscular mycorrhiza and beyond. Trends Plant Sci 16:356–362

    Article  PubMed  CAS  Google Scholar 

  3. Fortin JA, Bécard G, Declerck S, Dalpé Y, St-Arnaud M, Coughlan AP (2002) Arbuscular mycorrhiza on root-organ cultures. Can J Bot 80:1–20

    Article  CAS  Google Scholar 

  4. Booth RE, Mackey JML, Rorison IH, Spencer RE, Gupta PL, Hunt R (1993) ISP germination and rooting environments: sand, compost and solution culture. In: Hendry GAF, Grime JP (eds) Methods in comparative plant ecology: a laboratory manual. Chapman Hall, London, pp 19–23

    Google Scholar 

  5. Vierheilig H, Coughlan AP, Wyss U, Piché Y (1998) Ink and vinegar, a simple staining technique for arbuscular-mycorrhizal fungi. Appl Environ Microbiol 64:5004–5007

    PubMed  CAS  Google Scholar 

  6. Vierheilig H, Schweiger P, Brundrett M (2005) An overview of methods for the detection and observation of arbuscular mycorrhizal fungi in roots. Physiol Plant 125:393–404

    CAS  Google Scholar 

  7. Giovannetti M, Mosse B (1980) Evaluation of techniques for measuring vesicular arbuscular mycorrhizal infection in roots. New Phytol 84:489–500

    Article  Google Scholar 

  8. McGonigle TP, Miller MH, Evans DG, Fairchild GL, Swan JA (1990) A new method which gives an objective-measure of colonization of roots by vesicular-arbuscular mycorrhizal fungi. New Phytol 115:495–501

    Article  Google Scholar 

  9. Gerdemann JW, Nicolson TH (1963) Spores of mycorrhizal Endogone species extracted from soil by wet sieving and decanting. Trans Br Mycol Soc 46:235–244

    Article  Google Scholar 

  10. McKenney MC, Lindsey DL (1987) Improved method for quantifying endomycorrhizal fungi spores from soil. Mycologia 79:779–782

    Article  Google Scholar 

  11. Bécard G, Piché Y (1992) Establishment of vesicular-arbuscular mycorrhiza in root organ-culture: review and proposed methodology. Methods Microbiol 24:89–108

    Article  Google Scholar 

  12. Bécard G, Fortin JA (1988) Early events of vesicular arbuscular mycorrhiza formation on Ri T-DNA transformed roots. New Phytol 108:211–218

    Article  Google Scholar 

  13. St-Arnaud M, Hamel C, Vimard B, Caron M, Fortin JA (1996) Enhanced hyphal growth and spore production of the arbuscular mycorrhizal fungus Glomus intraradices in an in vitro system in the absence of host roots. Mycol Res 100:328–332

    Article  Google Scholar 

  14. Declerck S, Strullu DG, Plenchette C (1996) In vitro mass-production of the arbuscular mycorrhizal fungus, Glomus versiforme, associated with Ri T-DNA transformed carrot roots. Mycol Res 100:1237–1242

    Article  Google Scholar 

  15. Dalpé Y, Seguin S (2010) A “paper bridge” system to improve in-vitro propagation of arbuscular mycorrhizal fungi. Botany 88:617–620

    Article  Google Scholar 

  16. Doner LW, Bécard G (1991) Solubilization of gellan gels by chelation of cations. Biotechnol Tech 5:25–28

    Article  CAS  Google Scholar 

  17. Boisson-Dernier A, Chabaud M, Garcia F, Bécard G, Rosenberg C, Barker DG (2001) Agrobacterium rhizogenes-transformed roots of Medicago truncatula for the study of nitrogen-fixing and endomycorrhizal symbiotic associations. Mol Plant Microbe Interact 14:695–700

    Article  PubMed  CAS  Google Scholar 

  18. Mugnier J, Mosse B (1987) Vesicular-arbuscular mycorrhizal infection in transformed root-inducing T-DNA roots grown axenically. Phytopathology 77:1045–1050

    Article  Google Scholar 

  19. Karandashov V, Kuzovkina I, Hawkins HJ, George E (2000) Growth and sporulation of the arbuscular mycorrhizal fungus Glomus caledonium in dual culture with transformed carrot roots. Mycorrhiza 10:23–28

    Article  CAS  Google Scholar 

  20. Hepper CM (1979) Germination and growth of Glomus caledonius spores: the effects of inhibitors and nutrients. Soil Biol Biochem 11:269–277

    Article  CAS  Google Scholar 

  21. Hildebrandt U, Janetta K, Bothe H (2002) Towards growth of arbuscular mycorrhizal fungi independent of a plant host. Appl Environ Microbiol 68:1919–1924

    Article  PubMed  CAS  Google Scholar 

  22. Ribeiro APO, Picoli EAT, Lani ERG, Vendrame WA, Otoni WC (2009) The influence of flask sealing on in vitro morphogenesis of eggplant (Solanum melongena L.). Vitro Cell Dev Biol Plant 45:421–428

    Article  Google Scholar 

  23. Selby C, McRoberts WC, Hamilton JTG, Harvey BMR (1996) The influence of culture vessel head-space volatiles on somatic embryo maturation in Sitka spruce (Picea sitchensis (Bong.) Carr.). Plant Growth Regul 20:37–42

    Article  CAS  Google Scholar 

  24. Marino G, Berardi G (2004) Different sealing materials for Petri dishes strongly affect shoot regeneration and development from leaf explants of quince ‘BA 29’. Vitro Cell Dev Biol Plant 40:384–388

    Article  Google Scholar 

  25. David-Schwartz R, Badani H, Smadar W, Levy AA, Galili G, Kapulnik Y (2001) Identification of a novel genetically controlled step in mycorrhizal colonization: plant resistance to infection by fungal spores but not extra-radical hyphae. Plant J 27:561–569

    Article  PubMed  CAS  Google Scholar 

  26. Murray JD, Muni RRD, Torres-Jerez I, Tang YH, Allen S, Andriankaja M, Li GM, Laxmi A, Cheng XF, Wen JQ, Vaughan D, Schultze M, Sun J, Charpentier M, Oldroyd G, Tadege M, Ratet P, Mysore KS, Chen RJ, Udvardi MK (2011) Vapyrin, a gene essential for intracellular progression of arbuscular mycorrhizal symbiosis, is also essential for infection by rhizobia in the nodule symbiosis of Medicago truncatula. Plant J 65:244–252

    Article  PubMed  CAS  Google Scholar 

  27. Watrud LS, Heithaus JJ, Jaworski EG (1978) Geotropism in endomycorrhizal fungus Gigaspora margarita. Mycologia 70:449–452

    Article  Google Scholar 

  28. Douds DD (2002) Increased spore production by Glomus intraradices in the split-plate monoxenic culture system by repeated harvest, gel replacement, and resupply of glucose to the mycorrhiza. Mycorrhiza 12:163–167

    Article  PubMed  CAS  Google Scholar 

  29. Plenchette C, Declerck S, Diop TA, Strullu DG (1996) Infectivity of monoaxenic subcultures of the arbuscular mycorrhizal fungus Glomus versiforme associated with Ri-T-DNA-transformed carrot root. Appl Microbiol Biotechnol 46:545–548

    Article  CAS  Google Scholar 

  30. Vimard B, St-Arnaud M, Furlan V, Fortin JA (1999) Colonization potential of in vitro-produced arbuscular mycorrhizal fungus spores compared with a root-segment inoculum from open pot culture. Mycorrhiza 8:335–338

    Article  Google Scholar 

  31. Maldonado-Mendoza IE, Dewbre GR, Harrison MJ (2001) A phosphate transporter gene from the extra-radical mycelium of an arbuscular mycorrhizal fungus Glomus intraradices is regulated in response to phosphate in the environment. Mol Plant Microbe Interact 14:1140–1148

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Schultze .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Schultze, M. (2013). Protocols for Growing Plant Symbioses; Mycorrhiza. In: Maathuis, F. (eds) Plant Mineral Nutrients. Methods in Molecular Biology, vol 953. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-152-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-152-3_3

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-151-6

  • Online ISBN: 978-1-62703-152-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics