Skip to main content

Applications of High-Throughput Plant Phenotyping to Study Nutrient Use Efficiency

  • Protocol
  • First Online:
Plant Mineral Nutrients

Part of the book series: Methods in Molecular Biology ((MIMB,volume 953))

Abstract

Remote sensing and spectral reflectance measurements of plants has long been used to assess the growth and nutrient status of plants in a noninvasive manner. With improved imaging and computer technologies, these approaches can now be used at high-throughput for more extensive physiological and genetic studies. Here, we present an example of how high-throughput imaging can be used to study the growth of plants exposed to different nutrient levels. In addition, the color of the leaves can be used to estimate leaf chlorophyll and nitrogen status of the plant.

Parts of this chapter were adapted from a volume on Plant Salt Tolerance and High-throughput Phenotyping in Plants within the series of Methods in Molecular Biology with the permission of the editors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Stewart WM, Dibb DW, Johnston AE et al (2005) The contribution of commercial fertilizer nutrients to food production. Agron J 97(1):1–6

    Article  Google Scholar 

  2. Montes JM, Melchinger AE, Reif JC (2007) Novel throughput phenotyping platforms in plant genetic studies. Trends Plant Sci 12(10):433–436

    Article  PubMed  CAS  Google Scholar 

  3. Genc Y, McDonald GK, Tester M (2007) Reassessment of tissue Na+ concentration as a criterion for salinity tolerance in bread wheat. Plant Cell Environ 30:1486–1498

    Article  PubMed  CAS  Google Scholar 

  4. Passioura JB (2006) The perils of pot experiments. Funct Plant Biol 33(12):1075–1079

    Article  Google Scholar 

  5. Murphy PJ, Langridge P, Smith SE (1997) Cloning plant genes differentially expressed during colonization of roots of Hordeum vulgare by the vesicular-arbuscular mycorrhizal fungus Glomus intraradices. New Phytol 135(2):291–301

    Article  CAS  Google Scholar 

  6. Granier C, Aguirrezabal L, Chenu K et al (2006) PHENOPSIS, an automated platform for reproducible phenotyping of plant responses to soil water deficit in Arabidopsis thaliana permitted the identification of an accession with low sensitivity to soil water deficit. New Phytol 169(3):623–635

    Article  PubMed  Google Scholar 

  7. Jansen M, Gilmer F, Biskup B et al (2009) Simultaneous phenotyping of leaf growth and chlorophyll fluorescence via GROWSCREEN FLUORO allows detection of stress tolerance in Arabidopsis thaliana and other rosette plants. Funct Plant Biol 36(10–11):902–914

    Article  CAS  Google Scholar 

  8. Hunter F, Biver S, Fuqua P (2007) Light-science & magic: an introduction to photographic lighting. Focal Press Oxford, UK

    Google Scholar 

  9. Gonzalez RC, Woods RE (2006) Digital image processing, 3rd edn. Prentice-Hall, Inc. NJ, USA

    Google Scholar 

  10. Yadav SP, Ibaraki Y, Gupta SD (2010) Estimation of the chlorophyll content of micropropagated potato plants using RGB based image analysis. Plant Cell Tissue Organ Cult 100(2):183–188

    Article  CAS  Google Scholar 

  11. Vollmann J, Walter H, Sato T et al (2011) Digital image analysis and chlorophyll metering for phenotyping the effects of nodulation in soybean. Comput Electron Agric 75(1):190–195

    Article  Google Scholar 

  12. Pagola M, Ortiz R, Irigoyen I et al (2009) New method to assess barley nitrogen nutrition status based on image colour analysis: comparison with SPAD-502. Comput Electron Agric 65(2):213–218

    Article  Google Scholar 

  13. CIE (1976) Colorimetry, 2nd edn (Publication CIE No, 15.2). Central Bureau of the Commission Internationale de L’Eclairage, Vienna

    Google Scholar 

  14. Karcher DE, Richardson MD (2003) Quantifying turfgrass color using digital image analysis. Crop Sci 43(3):943–951

    Article  Google Scholar 

  15. Rorie RL, Purcell LC, Karcher DE et al (2011) The assessment of leaf nitrogen in corn from digital images. Crop Sci 51(5):2174–2180

    Article  Google Scholar 

  16. Hunt R (1978) Plant growth analysis. Edward Arnold Ltd.

    Google Scholar 

  17. Hunt R, Causton DR, Shipley B et al (2002) A modern tool for classical plant growth analysis. Ann Bot 90(4):485–488

    Article  PubMed  CAS  Google Scholar 

  18. Watson DJ (1947) Comparative physiological studies on the growth of field crops. Ann Bot 11(41):41–76

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bettina Berger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Berger, B., de Regt, B., Tester, M. (2013). Applications of High-Throughput Plant Phenotyping to Study Nutrient Use Efficiency. In: Maathuis, F. (eds) Plant Mineral Nutrients. Methods in Molecular Biology, vol 953. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-152-3_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-152-3_18

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-151-6

  • Online ISBN: 978-1-62703-152-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics