Skip to main content

Roles and Functions of Plant Mineral Nutrients

  • Protocol
  • First Online:
Plant Mineral Nutrients

Part of the book series: Methods in Molecular Biology ((MIMB,volume 953))

Abstract

Plants require macro- and micronutrients, each of which is essential for a plant to complete its life cycle. Adequate provision of nutrients impacts greatly on plant growth and as such is of crucial importance in the context of agriculture. Minerals are taken up by plant roots from the soil solution in ionic form which is mediated by specific transport proteins. Recently, important progress has been achieved in identifying transport and regulatory mechanisms for the uptake and distribution of nutrients. This and the main physiological roles of each nutrient will be discussed in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Maathuis FJM (2009) Physiological functions of mineral macronutrients. Curr Opin Plant Biol 12:250–258

    Article  PubMed  CAS  Google Scholar 

  2. Marschner H (2012) Mineral nutrition of higher plants, 3rd edn. Academic, London, UK

    Google Scholar 

  3. Read DJ (1996) The structure and function of the ericoid mycorrhizal root. Ann Bot 77:365–374

    Article  CAS  Google Scholar 

  4. Sokolovski SG, Meharg AA, Maathuis FJM (2002) Calluna vulgaris root cells show increased capacity for amino acid uptake when colonised with the mycorrhizal fungus Hymenoscyphus ericae. New Phytol 155:525–530

    Article  Google Scholar 

  5. Jamtgard S, Nasholm T, Huss-Danell K (2008) Characteristics of amino acid uptake in barley. Plant Soil 302:221–231

    Article  Google Scholar 

  6. Orsel M, Filleur S, Fraisier V, Daniel-Vedele F (2002) Nitrate transport in plants: which gene and which control? J Exp Bot 53:825–833

    Article  PubMed  CAS  Google Scholar 

  7. Loque D, Lalonde S, Looger LL, von Wiren N, Frommer WB (2007) A cytosolic trans-activation domain essential for ammonium uptake. Nature 446:195–198

    Article  PubMed  CAS  Google Scholar 

  8. Whiteman SA, Serazetdinova L, Jones AME, Sanders D, Rathjen J, Peck SC, Maathuis FJM (2008) Identification of novel proteins and phosphorylation sites in a tonoplast enriched membrane fraction of Arabidopsis thaliana. Proteomics 8:3536–3547

    Article  PubMed  CAS  Google Scholar 

  9. Stacey MG, Osawa H, Patel A, Gassmann W, Stacey G (2006) Expression analyses of Arabidopsis oligopeptide transporters during seed germination, vegetative growth and reproduction. Planta 223:291–305

    Article  PubMed  CAS  Google Scholar 

  10. Maathuis FJM, Sanders D (1994) Mechanism of high affinity potassium uptake in roots of Arabidopsis thaliana. Proc Natl Acad Sci USA 91:9272–9276

    Article  PubMed  CAS  Google Scholar 

  11. Maathuis FJM, Sanders D (1995) Contrasting roles in ion transport of two K+-channel types in root cells of Arabidopsis thaliana. Planta 197:456–464

    Article  PubMed  CAS  Google Scholar 

  12. Hirsch RE, Lewis BD, Spalding EP, Sussman MR (1998) A role for the AKT1 potassium channel in plant nutrition. Science 280:918–921

    Article  PubMed  CAS  Google Scholar 

  13. Xu J, Li HD, Chen LQ, Wang Y, Liu LL, He L, Wu WH (2006) A protein kinase, interacting with two calcineurin B-like proteins, regulates K+ transporter AKT1 in Arabidopsis. Cell 125:1347–1360

    Article  PubMed  CAS  Google Scholar 

  14. Armengaud P, Breitling R, Amtmann A (2004) The potassium-dependent transcriptome of Arabidopsis reveals a prominent role of jasmonic acid in nutrient signaling. Plant Physiol 36:2556–2576

    Article  Google Scholar 

  15. Gaymard F, Pilot G, Lacombe B, Bouchez D, Bruneau D, Boucherez J, Michaux-Ferriere M, Thibaud J, Sentenac H (1998) Identification and disruption of a plant Shaker-like outward channel involved in K+ release into the xylem sap. Cell 94:647–655

    Article  PubMed  CAS  Google Scholar 

  16. Pardo JM, Cubero B, Leidi EO, Quintero FJ (2006) Alkali cation exchangers: roles in cellular homeostasis and stress tolerance. J Exp Bot 57:1181–1199

    Article  PubMed  CAS  Google Scholar 

  17. Gobert A, Isayenkov S, Voelker C, Czempinski K, Maathuis FJM (2007) The two-pore channel TPK1 gene encodes the vacuolar K+ conductance and plays a role in K+ homeostasis. Proc Natl Acad Sci USA 104:10726–10731

    Article  PubMed  CAS  Google Scholar 

  18. Walker DJ, Leigh RA, Miller AJ (1996) Potassium homeostasis in vacuolate plant cells. Proc Natl Acad Sci USA 93:10510–10514

    Article  PubMed  CAS  Google Scholar 

  19. Britto DT, Kronzucker HJ (2008) Cellular mechanisms of potassium transport in plants. Physiol Plant 133:637–650

    Article  PubMed  CAS  Google Scholar 

  20. Demidchik V, Maathuis FJM (2007) Physiological roles of nonselective cation channels in plants: from salt stress to signalling and development. New Phytol 175:387–404

    Article  PubMed  CAS  Google Scholar 

  21. White PJ, Broadley MR (2003) Calcium in plants. Ann Bot 92:487–511

    Article  PubMed  CAS  Google Scholar 

  22. Dodd AN, Kudla J, Sanders D (2010) The language of calcium signaling. Annu Rev Plant Biol 61:593–620

    Article  PubMed  CAS  Google Scholar 

  23. Broadley MR, Bowen HC, Cotterill HL, Hammond JP, Meacham MC, Mead A, White PJ (2004) Phylogenetic variation in the shoot mineral concentration of angiosperms. J Exp Bot 55:321–336

    Article  PubMed  CAS  Google Scholar 

  24. Berezin I, Mizrachy-Dagry T, Brook E, Mizrahi K, Elazar M, Zhuo SP, Saul-Tcherkas V, Shaul O (2008) Overexpression of AtMHX in tobacco causes increased sensitivity to Mg2+, Zn2+, and Cd2+ ions, induction of V-ATPase expression, and a reduction in plant size. Plant Cell Rep 27:939–949

    Article  PubMed  CAS  Google Scholar 

  25. Robinson H, Gao YG, Sanishvili R, Joachimiak A, Wang AHJ (2000) Hexahydrated magnesium ions bind in the deep major groove and at the outer mouth of A-form nucleic acid duplexes. Nucleic Acids Res 28:1760–1766

    Article  PubMed  CAS  Google Scholar 

  26. Schachtman DP, Reid JD, Ayling SM (1998) Phosphorus uptake by plants: from soil to cell. Plant Physiol 116:447–453

    Article  PubMed  CAS  Google Scholar 

  27. Bucher M (2007) Functional biology of plant phosphate uptake at root and mycorrhiza interfaces. New Phytol 173:11–26

    Article  PubMed  CAS  Google Scholar 

  28. Rouached H, Wirtz M, Alary R, Hell R, Arpat AB, Davidian JC, Fourcroy P, Berthomieu P (2008) Differential regulation of the expression of two high-affinity sulfate transporters, SULTR1.1 and SULTR1.2, in Arabidopsis. Plant Physiol 147:897–911

    Article  PubMed  CAS  Google Scholar 

  29. Ramania B, Zornb H, Papenbrock J (2004) Quantification and fatty acid profiles of sulfolipids in two halophytes and a glycophyte grown under different salt concentrations. Z Naturforsch C 59:835–842

    Google Scholar 

  30. Clemens S (2006) Toxic metal accumulation, responses to exposure and mechanisms of tolerance in plants. Biochimie 88:1707–1719

    Article  PubMed  CAS  Google Scholar 

  31. Epstein E (2000) The discovery of the essential elements. In: Kung SD, Yang SF (eds) Discoveries in plant biology, vol 3. World Scientific Publishing Co. Pte. Ltd, Singapore, pp 1–16

    Chapter  Google Scholar 

  32. Teakle NL, Tyerman SD (2010) Mechanisms of Cl− transport contributing to salt tolerance. Plant Cell Environ 33(4):566–589

    Article  PubMed  CAS  Google Scholar 

  33. Kawakami K, Umena Y, Kamiya N, Shen JR (2009) Location of chloride and its possible functions in oxygen-evolving photosystem II revealed by X-ray crystallography. Proc Natl Acad USA 106(21):8567–8572

    Article  CAS  Google Scholar 

  34. Lindsay WL (1979) Chemical equilibria in soils. Wiley, New York

    Google Scholar 

  35. Marschner H, Romheld V (1994) Strategies of plants for acquisition of iron. Plant Soil 165(2):261–274

    Article  CAS  Google Scholar 

  36. Nozoye T, Nagasaka S, Kobayashi T, Takahashi M, Sato Y, Uozumi N et al (2011) Phytosiderophore efflux transporters are crucial for iron acquisition in graminaceous plants. J Biol Chem 286(7):5446–5454

    Article  PubMed  CAS  Google Scholar 

  37. Lehto T, Ruuhola T, Dell B (2010) Boron in forest trees and forest ecosystems. Forest Ecol Manag 260(12):2053–2069

    Article  Google Scholar 

  38. Miwa K, Fujiwara T (2010) Boron transport in plants: co-ordinated regulation of transporters. Ann Bot 105(7):1103–1108

    Article  PubMed  CAS  Google Scholar 

  39. Donald CM, Prescott JA (1975) Trace elements in Australian crop and pasture production, 1924–1974. In: Nicholas DJ, Egan AR (eds) Trace elements in soil-plant-animal systems. Academic, New York, pp 7–37

    Google Scholar 

  40. Cailliatte R, Schikora A, Briat JF, Mari S, Curie C (2010) High-affinity manganese uptake by the metal transporter NRAMP1 is essential for Arabidopsis growth in low manganese conditions. Plant Cell 22(3):904–917

    Article  PubMed  CAS  Google Scholar 

  41. Broadley MR, White PJ, Hammond JP, Zelko I, Lux A (2007) Zinc in plants. New Phytol 173(4):677–702

    Article  PubMed  CAS  Google Scholar 

  42. Rengel Z (1999) Physiological mechanisms underlying differential nutrient efficiency of crop genotypes. In: Rengel Z (ed) Mineral nutrition of crops: fundamental mechanisms and implications. Food Products Press, New York, pp 227–265

    Google Scholar 

  43. Yruela I (2009) Copper in plants: acquisition, transport and interactions. Funct Plant Biol 36(5):409–430

    Article  CAS  Google Scholar 

  44. Klaumann S, Nickolaus SD, Furst SH, Starck S, Schneider S, Neuhaus HE et al (2011) The tonoplast copper transporter COPT5 acts as an exporter and is required for interorgan allocation of copper in Arabidopsis thaliana. New Phytol 192(2):393–404

    Article  PubMed  CAS  Google Scholar 

  45. Yuan M, Chu ZH, Li XH, Xu CG, Wang SP (2010) The bacterial pathogen Xanthomonas oryzae overcomes rice defenses by regulating host copper redistribution. Plant Cell 22(9):3164–3176

    Article  PubMed  CAS  Google Scholar 

  46. Nishida S, Tsuzuki C, Kato A, Aisu A, Yoshida J, Mizuno T (2011) AtIRT1, the primary iron uptake transporter in the root, mediates excess nickel accumulation in Arabidopsis thaliana. Plant Cell Physiol 52(8):1433–1442

    Article  PubMed  CAS  Google Scholar 

  47. Küpper H, Kroneck PMH (2007) Nickel in the environment and its role in the metabolism of plants and cyanobacteria. Metal Ions Life Sci 2:31–62

    Google Scholar 

  48. Tomatsu H, Takano J, Takahashi H, Watanabe-Takahashi A, Shibagaki N, Fujiwara T (2007) An Arabidopsis thaliana high-affinity molybdate transporter required for efficient uptake of molybdate from soil. Proc Natl Acad Sci USA 104(47):18807–18812

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frans J. M. Maathuis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Maathuis, F.J.M., Diatloff, E. (2013). Roles and Functions of Plant Mineral Nutrients. In: Maathuis, F. (eds) Plant Mineral Nutrients. Methods in Molecular Biology, vol 953. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-152-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-152-3_1

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-151-6

  • Online ISBN: 978-1-62703-152-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics