Skip to main content

Introduction to Glycosylation and Mass Spectrometry

  • Protocol
  • First Online:
Book cover Mass Spectrometry of Glycoproteins

Part of the book series: Methods in Molecular Biology ((MIMB,volume 951))

Abstract

Glycosylation is increasingly recognized as a common and biologically significant post-translational modification of proteins. Modern mass spectrometry methods offer the best ways to characterize the glycosylation state of proteins. Both glycobiology and mass spectrometry rely on specialized nomenclature, techniques, and knowledge, which pose a barrier to entry by the nonspecialist. This introductory chapter provides an overview of the fundamentals of glycobiology, mass spectrometry methods, and the intersection of the two fields. Foundational material included in this chapter includes a description of the biological process of glycosylation, an overview of typical glycoproteomics workflows, a description of mass spectrometry ionization methods and instrumentation, and an introduction to bioinformatics resources. In addition to providing an orientation to the contents of the other chapters of this volume, this chapter cites other important works of potential interest to the practitioner. This overview, combined with the state-of-the-art protocols contained within this volume, provides a foundation for both glycobiologists and mass spectrometrists seeking to bridge the two fields.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Han X, Aslanian A, Yates JR III (2008) Mass spectrometry for proteomics. Curr Opin Chem Biol 12:483–490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Varki A, Cummings RD, Esko JD, Freeze HH, Stanley P, Bertozzi CR, Hart GW, Etzler ME (2010) Essentials of glycobiology, 2nd edn. Cold Spring Harbor, New York

    Google Scholar 

  3. Apweiler R, Hermjakob H, Sharon N (1999) On the frequency of protein glycosylation, as deduced from analysis of the swiss-prot database. Biochim Biophys Acta 1473:4–8

    Article  CAS  PubMed  Google Scholar 

  4. Taniguchi N (2008) Human disease glycomics/proteome initiative (HGPI). Mol Cell Proteomics 7:626–627

    CAS  PubMed  Google Scholar 

  5. Pan S et al (2011) Mass spectrometry based glycoproteomics—from a proteomics perspective. Mol Cell Proteomics 10:R110.003251

    Article  PubMed  Google Scholar 

  6. Zaia J (2010) Mass spectrometry and glycomics. OMICS 14:401–418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hart JR et al (2011) Protein expression profiles of C3H 10T1/2 murine fibroblasts and of isogenic cells transformed by the H1047R mutant of phosphoinositide 3-kinase (PI3K). Cell Cycle 10:971–976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Sola RJ, Griebenow K (2010) Glycosylation of therapeutic proteins: an effective strategy to optimize efficacy. BioDrugs 24:9–21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Varki A et al (2009) Symbol nomenclature for glycan representation. Proteomics 9:5398–5399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Roepstorff P, Fohlman J (1984) Proposal for a common nomenclature for sequence ions in mass spectra of peptides. Biomed Mass Spectrom 11:601

    Article  CAS  PubMed  Google Scholar 

  11. Domon B, Costello C (1988) A systematic nomenclature for carbohydrate fragmentations in FAB-MS/MS spectra of glycoconjugates. Glycoconj J 5:379–409

    Article  Google Scholar 

  12. Messner P (2004) Prokaryotic glycoproteins: unexplored but important. J Bacteriol 186:2517–2519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Jarrell KF et al (2010) S-layer glycoproteins and flagellins: reporters of archaeal post-translational modifications. Archaea 2010:612948. doi:10.1155/2010/612948

    Article  PubMed  PubMed Central  Google Scholar 

  14. Rudd PM et al (1994) Glycoforms modify the dynamic stability and functional activity of an enzyme. Biochemistry 33:17–22

    Article  CAS  PubMed  Google Scholar 

  15. Shao L, Haltiwanger RS (2003) O-fucose modifications of epidermal growth factor-like repeats and thrombospondin type 1 repeats: unusual modifications in unusual places. Cell Mol Life Sci 60:241–250

    Article  CAS  PubMed  Google Scholar 

  16. Yoshida-Moriguchi T et al (2010) O-mannosyl phosphorylation of alpha-dystroglycan is required for laminin binding. Science 327:88–92

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Rexach JE, Clark PM, Hsieh-Wilson LC (2008) Chemical approaches to understanding O-GlcNAc glycosylation in the brain. Nat Chem Biol 4:97–106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Morelle W, Michalski JC (2007) Analysis of protein glycosylation by mass spectrometry. Nat Protoc 2:1585–1602

    Article  CAS  PubMed  Google Scholar 

  19. McLafferty FW et al (1999) Top down versus bottom up protein characterization by tandem high-resolution mass spectrometry. J Am Chem Soc 121:806–812

    Article  Google Scholar 

  20. Shinohara Y et al (2004) Direct N-glycan profiling in the presence of tryptic peptides on MALDI-TOF by controlled ion enhancement and suppression upon glycan-selective derivatization. Anal Chem 76:6989–6997

    Article  CAS  PubMed  Google Scholar 

  21. Guillard M et al (2011) Plasma N-glycan profiling by mass spectrometry for congenital disorders of glycosylation type II. Clin Chem 57:593–602

    Article  CAS  PubMed  Google Scholar 

  22. Wagner-Rousset E et al (2008) The way forward, enhanced characterization of therapeutic antibody glycosylation: comparison of three level mass spectrometry-based strategies. J Chromatogr B Analyt Technol Biomed Life Sci 872:23–37

    Article  CAS  PubMed  Google Scholar 

  23. Schreiber TB et al (2008) Quantitative phosphoproteomics—an emerging key technology in signal-transduction research. Proteomics 8:4416–4432

    Article  CAS  PubMed  Google Scholar 

  24. Schulze WX, Usadel B (2010) Quantitation in mass-spectrometry-based proteomics. Annu Rev Plant Biol 61:491–516

    Article  CAS  PubMed  Google Scholar 

  25. Blagoev B et al (2003) A proteomics strategy to elucidate functional protein-protein interactions applied to EGF signaling. Nat Biotechnol 21:315–8

    Article  CAS  PubMed  Google Scholar 

  26. Ross PL et al (2004) Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Mol Cell Proteomics 3:1154–69

    Article  CAS  PubMed  Google Scholar 

  27. Atwood JA III et al (2008) Quantitation by isobaric labeling: applications to glycomics. J Proteome Res 7:367–374

    Article  CAS  PubMed  Google Scholar 

  28. Orlando R et al (2009) IDAWG: metabolic incorporation of stable isotope labels for quantitative glycomics of cultured cells. J Proteome Res 8:3816–3823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Dallas DC et al (2011) N-linked glycan profiling of mature human milk by high-performance microfluidic chip liquid chromatography time-of-flight tandem mass spectrometry. J Agric Food Chem 59:4255–4263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Murray KK et al (2005) IUPAC standard definitions of terms relating to mass spectrometry. Abstr Pap Am Chem Soc 229:U123–U123

    Google Scholar 

  31. Kellie JF et al (2010) The emerging process of top down mass spectrometry for protein analysis: biomarkers, protein-therapeutics, and achieving high throughput. Mol Biosyst 6:1532–1539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Horn DM, Zubarev RA, McLafferty FW (2000) Automated reduction and interpretation of high resolution electrospray mass spectra of large molecules. J Am Soc Mass Spectrom 11:320–332

    Article  CAS  PubMed  Google Scholar 

  33. Zhang Z, Marshall AG (1998) A universal algorithm for fast and automated charge state deconvolution of electrospray mass-to-charge ratio spectra. J Am Soc Mass Spectrom 9:225–233

    Article  CAS  PubMed  Google Scholar 

  34. Conrads TP et al (2000) Utility of accurate mass tags for proteome-wide protein identification. Anal Chem 72:3349–3354

    Article  CAS  PubMed  Google Scholar 

  35. Fenn JB et al (1989) Electrospray ionization for mass-spectrometry of large biomolecules. Science 246:64–71

    Article  CAS  PubMed  Google Scholar 

  36. Karas M, Hillenkamp F (1988) Laser desorption ionization of proteins with molecular masses exceeding 10,000 daltons. Anal Chem 60:2299–2301

    Article  CAS  PubMed  Google Scholar 

  37. Tanaka K et al (1988) Protein and polymer analyses up to m/z 100 000 by laser ionization time-of-flight mass spectrometry. Rapid Commun Mass Spectrom 2:151–153

    Article  CAS  Google Scholar 

  38. Zhou M, Veenstra, T (2008) Mass spectrometry: M/z 1983-2008. Biotechniques 44:667–668, 670

    Google Scholar 

  39. Swaney DL, McAlister GC, Coon JJ (2008) Decision tree-driven tandem mass spectrometry for shotgun proteomics. Nat Methods 5:959–964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Patrie SM et al (2006) Top down mass spectrometry of <60-kDa proteins from Methanosarcina acetivorans using quadrupole FRMS with automated octopole collisionally activated dissociation. Mol Cell Proteomics 5:14–25

    Article  CAS  PubMed  Google Scholar 

  41. Patrie SM et al (2004) Construction of a hybrid quadrupole/fourier transform ion cyclotron resonance mass spectrometer for versatile ms/ms above 10 kDa. J Am Soc Mass Spectrom 15:1099–1108

    Article  CAS  PubMed  Google Scholar 

  42. Niessen WM (1998) Advances in instrumentation in liquid chromatography-mass spectrometry and related liquid-introduction techniques. J Chromatogr A 794:407–435

    Article  CAS  PubMed  Google Scholar 

  43. MacNair JE, Patel KD, Jorgenson JW (1999) Ultrahigh-pressure reversed-phase capillary liquid chromatography: isocratic and gradient elution using columns packed with 1.0-micron particles. Anal Chem 71:700–708

    Article  CAS  PubMed  Google Scholar 

  44. Wells JM, McLuckey SA (2005) Collision-induced dissociation (CID) of peptides and proteins. Methods Enzymol 402:148–185

    Article  CAS  PubMed  Google Scholar 

  45. Bean MF et al (1991) Tandem mass spectrometry of peptides using hybrid and four-sector instruments: a comparative study. Anal Chem 63:1473–1481

    Article  CAS  PubMed  Google Scholar 

  46. Olsen JV et al (2007) Higher-energy C-trap dissociation for peptide modification analysis. Nat Methods 4:709–712

    Article  CAS  PubMed  Google Scholar 

  47. Little DP et al (1994) Infrared multiphoton dissociation of large multiply charged ions for biomolecule sequencing. Anal Chem 66:2809–2815

    Article  CAS  PubMed  Google Scholar 

  48. McLafferty FW et al (2001) Electron capture dissociation of gaseous multiply charged ions by Fourier-transform ion cyclotron resonance. J Am Soc Mass Spectrom 12:245–249

    Article  CAS  PubMed  Google Scholar 

  49. Mikesh LM et al (2006) The utility of ETD mass spectrometry in proteomic analysis. Biochim Biophys Acta 1764:1811–1822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Hakansson K et al (2003) Combined electron capture and infrared multiphoton dissociation for multistage MS/MS in a Fourier transform ion cyclotron resonance mass spectrometer. Anal Chem 75:3256–3262

    Article  CAS  PubMed  Google Scholar 

  51. Wuhrer M et al (2007) Glycoproteomics based on tandem mass spectrometry of glycopeptides. J Chromatogr B Analyt Technol Biomed Life Sci 849:115–128

    Article  CAS  PubMed  Google Scholar 

  52. Boersema PJ, Mohammed S, Heck AJ (2009) Phosphopeptide fragmentation and analysis by mass spectrometry. J Mass Spectrom 44:861–878

    Article  CAS  PubMed  Google Scholar 

  53. Hakansson K et al (2001) Electron capture dissociation and infrared multiphoton dissociation MS/MS of an N-glycosylated tryptic peptic to yield complementary sequence information. Anal Chem 73:4530–4536

    Article  CAS  PubMed  Google Scholar 

  54. Catalina MI et al (2007) Electron transfer dissociation of N-glycopeptides: loss of the entire N-glycosylated asparagine side chain. Rapid Commun Mass Spectrom 21:1053–1061

    Article  CAS  PubMed  Google Scholar 

  55. Wu SL et al (2007) On-line LC-MS approach combining collision-induced dissociation (CID), electron-transfer dissociation (ETD), and CID of an isolated charge-reduced species for the trace-level characterization of proteins with post-translational modifications. J Proteome Res 6:4230–4244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Deutsch EW, Lam H, Aebersold R (2008) Data analysis and bioinformatics tools for tandem mass spectrometry in proteomics. Physiol Genomics 33:18–25

    Article  CAS  PubMed  Google Scholar 

  57. Fenyo D, Beavis RC (2008) Informatics development: challenges and solutions for MALDI mass spectrometry. Mass Spectrom Rev 27:1–19

    Article  CAS  PubMed  Google Scholar 

  58. Lisacek F (2006) Web-based MS/MS data analysis. Proteomics 6(suppl 2):22–32

    Article  PubMed  Google Scholar 

  59. Eng JK et al (2008) A fast SEQUEST cross correlation algorithm. J Proteome Res 7:4598–4602

    Article  CAS  PubMed  Google Scholar 

  60. Kumar C, Mann M (2009) Bioinformatics analysis of mass spectrometry-based proteomics data sets. FEBS Lett 583:1703–1712

    Article  CAS  PubMed  Google Scholar 

  61. Perkins DN et al (1999) Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 20:3551–3567

    Article  CAS  PubMed  Google Scholar 

  62. Ducret A et al (1998) High throughput protein characterization by automated reverse-phase chromatography/electrospray tandem mass spectrometry. Protein Sci 7:706–719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Zamdborg L et al (2007) Prosight PTM 2.0: improved protein identification and characterization for top down mass spectrometry. Nucleic Acids Res 35:W701–W706

    Article  PubMed  PubMed Central  Google Scholar 

  64. LeDuc RD et al (2004) Prosight PTM: an integrated environment for protein identification and characterization by top-down mass spectrometry. Nucleic Acids Res 32:W340–W345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Taylor GK et al (2003) Web and database software for identification of intact proteins using “top down” mass spectrometry. Anal Chem 75:4081–4086

    Article  CAS  PubMed  Google Scholar 

  66. Karabacak NM et al (2009) Sensitive and specific identification of wild type and variant proteins from 8 to 669 kDa using top-down mass spectrometry. Mol Cell Proteomics 8:846–856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Tsai YS et al (2009) Precursor ion independent algorithm for top-down shotgun proteomics. J Am Soc Mass Spectrom 20:2154–2166

    Article  CAS  PubMed  Google Scholar 

  68. Smith RD et al (2002) An accurate mass tag strategy for quantitative and high-throughput proteome measurements. Proteomics 2:513–523

    Article  CAS  PubMed  Google Scholar 

  69. Frank A et al (2005) Peptide sequence tags for fast database search in mass-spectrometry. J Proteome Res 4:1287–1295

    Article  CAS  PubMed  Google Scholar 

  70. Sheng QH, Xie T, Ding DF (2000) De novo interpretation of MS/MS spectra and protein identification via database searching. Sheng Wu Hua Xue Yu Sheng Wu Wu Li Xue Bao (Shanghai) 32:595–600

    CAS  Google Scholar 

  71. Domon B, Aebersold R (2006) Mass spectrometry and protein analysis. Science 312:212–217

    Article  CAS  PubMed  Google Scholar 

  72. Peng J et al (2003) Evaluation of multidimensional chromatography coupled with tandem mass spectrometry (LC/LC-MS/MS) for large-scale protein analysis: the yeast proteome. J Proteome Res 2:43–50

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Steven M. Patrie or Jennifer J. Kohler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Patrie, S.M., Roth, M.J., Kohler, J.J. (2013). Introduction to Glycosylation and Mass Spectrometry. In: Kohler, J., Patrie, S. (eds) Mass Spectrometry of Glycoproteins. Methods in Molecular Biology, vol 951. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-146-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-146-2_1

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-145-5

  • Online ISBN: 978-1-62703-146-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics