Skip to main content

Super-Resolution Imaging by Localization Microscopy

  • Protocol
  • First Online:
Nanoimaging

Part of the book series: Methods in Molecular Biology ((MIMB,volume 950))

Abstract

Photoactivated localization microscopy (PALM) and the related technique of Stochastic optical reconstruction microscopy (STORM) are super-resolution imaging methods based on the precise localization of single molecules. Instruments based on these techniques are now commercially available and are capable of generating images with lateral resolutions in the tens of nanometers range. Here, we give an overview of the current state of this technology including live-cell and 3D PALM and provide an in-depth protocol for performing PALM experiments in a fixed cell monolayer. This includes both the instrumentation/acquisition aspects and the data analysis required for generating quantitative, super-resolution data of molecular distributions. In this example, the system under investigation will be fixed HeLa cells transfected with the photo-switchable fluorescent protein PS-CFP2 targeted to the plasma membrane by fusion to the N-terminus of the protein kinase Lck.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schermelleh L, Heintzmann R, Leonhardt H (2010) A guide to super-resolution fluorescence microscopy. J Cell Biol 190:165–175

    Article  PubMed  CAS  Google Scholar 

  2. Betzig E, Patterson GH, Sougrat R et al (2006) Imaging intracellular fluorescent proteins at nanometer resolution. Science 313:1642–1645

    Article  PubMed  CAS  Google Scholar 

  3. Rust MJ, Bates M, Zhuang X (2006) Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat Meth 3:793–796

    Article  CAS  Google Scholar 

  4. Heilemann M, van de Linde S, Schüttpelz M et al (2008) Subdiffraction-resolution fluorescence imaging with conventional fluorescent probes. Angew Chem Int Ed 47:6172–6176

    Article  CAS  Google Scholar 

  5. Axelrod D (2001) Total internal reflection fluorescence microscopy in cell biology. Traffic 2:764–774

    Article  PubMed  CAS  Google Scholar 

  6. Heilemann M, van de Linde S, Mukherjee A, Sauer M (2009) Super-resolution imaging with small organic fluorophores. Angew Chem Int Ed 48:6903–6908

    Article  CAS  Google Scholar 

  7. Thompson RE, Larson DR, Webb WW (2002) Precise nanometer localization analysis for individual fluorescent probes. Biophys J 82:2775–2783

    Article  PubMed  CAS  Google Scholar 

  8. Ripley BD (1977) Modelling spatial patterns. J R Stat Soc Series B Stat Methodol 39:172–192

    Google Scholar 

  9. Lillemeier BF, Mortelmaier MA, Forstner MB et al (2010) TCR and Lat are expressed on separate protein islands on T cell membranes and concatenate during activation. Nat Immunol 11:90–96

    Article  PubMed  CAS  Google Scholar 

  10. Owen DM, Rentero C, Rossy J et al (2010) PALM imaging and cluster analysis of protein heterogeneity at the cell surface. J Biophoton 3:446–454

    Article  CAS  Google Scholar 

  11. Williamson DJ, Owen DM, Rossy J et al (2011) Pre-existing clusters of the adaptor Lat do not participate in early T cell signaling events. Nat Immunol 12:655–662

    Article  PubMed  CAS  Google Scholar 

  12. Getis A, Franklin J (1987) Second-order neigborhood analysis of mapped point patterns. Ecology 68:473–477

    Article  Google Scholar 

  13. Shroff H, Galbraith CG, Galbraith JA, Betzig E (2008) Live-cell photoactivated localization microscopy of nanoscale adhesion dynamics. Nat Meth 5:417–423

    Article  CAS  Google Scholar 

  14. Juette MF, Gould TJ, Lessard MD et al (2008) Three-dimensional sub-100 nm resolution fluorescence microscopy of thick samples. Nat Meth 5:527–529

    Article  CAS  Google Scholar 

  15. Huang B, Wang W, Bates M, Zhuang X (2008) Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy. Science 319:810–813

    Article  PubMed  CAS  Google Scholar 

  16. Shtengel G, Galbraith JA, Galbraith CG, Lippincott-Schwartz J et al (2009) Interferometric fluorescent super-resolution microscopy resolves 3D cellular ultrastructure. Proc Natl Acad Sci 106:3125–3130

    Article  PubMed  CAS  Google Scholar 

  17. Simons K, Ikonen E (1997) Functional rafts in cell membranes. Nature 387:569–572

    Article  PubMed  CAS  Google Scholar 

  18. Pike LJ (2006) Rafts defined: a report on the keystone symposium on lipid rafts and cell function. J Lipid Res 47:1597–1598

    Article  PubMed  CAS  Google Scholar 

  19. Henriques R, Lelek M, Fornasiero EF et al (2010) QuickPALM: 3D real-time photoactivation nanoscopy image processing in ImageJ. Nat Meth 7:339–340

    Article  CAS  Google Scholar 

  20. Holden SJ, Uphoff S, Kapanidis AN (2011) DAOSTORM: an algorithm for high- density super-resolution microscopy. Nat Meth 8:279–280

    Article  CAS  Google Scholar 

  21. Mortensen KI, Churchman LS, Spudich JA, Flyvbjerg H (2010) Optimized localization analysis for single-molecule tracking and super-resolution microscopy. Nat Meth 7:377–381

    Article  CAS  Google Scholar 

  22. Smith CS, Joseph N, Rieger B, Lidke KA (2010) Fast, single-molecule localization that achieves theoretically minimum uncertainty. Nat Meth 7:373–375

    Article  CAS  Google Scholar 

  23. Annibale P, Vanni S, Scarselli M, Rothlisberger U, Radenovic A (2011) Quantitative photo activated localization microscopy: unraveling the effects of photoblinking. PLoS One 6:e22678

    Article  PubMed  CAS  Google Scholar 

  24. Annibale P, Scarselli M, Kodiyan A, Radenovic A (2010) Photoactivatable fluorescent protein mEos2 displays repeated photoactivation after a long-lived dark state in the Red photoconverted form. J Phys Chem Lett 1:1506–1510

    Article  CAS  Google Scholar 

  25. Perry G (2004) SpPack: spatial point pattern analysis in excel using visual basic for applications (VBA). Environ Modell Softw 19:559–569

    Article  Google Scholar 

Download references

Acknowledgment

This work was supported by the Australian Research Council (ARC), National Health and Medical Research Council (NHMRC), and the Human Frontiers Science Program (HFSP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dylan M. Owen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Owen, D.M., Magenau, A., Williamson, D.J., Gaus, K. (2013). Super-Resolution Imaging by Localization Microscopy. In: Sousa, A., Kruhlak, M. (eds) Nanoimaging. Methods in Molecular Biology, vol 950. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-137-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-137-0_6

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-136-3

  • Online ISBN: 978-1-62703-137-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics