Skip to main content

Correlative Optical and Scanning Probe Microscopies for Mapping Interactions at Membranes

  • Protocol
  • First Online:
Nanoimaging

Part of the book series: Methods in Molecular Biology ((MIMB,volume 950))

Abstract

Innovative approaches for real-time imaging on molecular-length scales are providing researchers with powerful strategies for characterizing molecular and cellular structures and dynamics. Combinatorial techniques that integrate two or more distinct imaging modalities are particularly compelling as they provide a means for overcoming the limitations of the individual modalities and, when applied simultaneously, enable the collection of rich multi-modal datasets. Almost since its inception, scanning probe microscopy has closely associated with optical microscopy. This is particularly evident in the fields of cellular and molecular biophysics where researchers are taking full advantage of these real-time, in situ, tools to acquire three-dimensional molecular-scale topographical images with nanometer resolution, while simultaneously characterizing their structure and interactions though conventional optical microscopy. The ability to apply mechanical or optical stimuli provides an additional experimental dimension that has shown tremendous promise for examining dynamic events on sub-cellular length scales. In this chapter, we describe recent efforts in developing these integrated platforms, the methodology for, and inherent challenges in, performing coupled imaging experiments, and the potential and future opportunities of these research tools for the fields of molecular and cellular biophysics with a specific emphasis on the application of these coupled approaches for the characterization of interactions occurring at membrane interfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Engel A, Schoenenberger CA, Muller DJ (1997) High resolution imaging of native biological sample surfaces using scanning probe microscopy. Curr Opin Struct Biol 7:279–284

    PubMed  CAS  Google Scholar 

  2. Pogoryelov D, Reichen C, Klyszejko AL et al (2007) The oligomeric state of c rings from cyanobacterial F-ATP synthases varies from 13 to 15. J Bacteriol 189:5895–5902

    PubMed  CAS  Google Scholar 

  3. Muller DJ, Engel A (2007) Atomic force microscopy and spectroscopy of native membrane proteins. Nat Protoc 2:2191–2197

    PubMed  Google Scholar 

  4. Muller DJ, Sapra KT, Scheuring S et al (2006) Single-molecule studies of membrane proteins. Curr Opin Struct Biol 16:489–495

    PubMed  Google Scholar 

  5. Gustafasson MGL (2000) Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy. J Microsc 198:82–87

    Google Scholar 

  6. Gustafsson MGL (2005) Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution. Proc Natl Acad Sci USA 102:13081–13086

    PubMed  CAS  Google Scholar 

  7. Fedosseev R, Belyaev Y, Frohn J, Stemmer A (2005) Structured light illumination for extended resolution in fluorescence microscopy. Optics Lasers Engin 43:403–414

    Google Scholar 

  8. Yildiz A, Selvin PR (2005) Fluorescence imaging with one nanometer accuracy: application to molecular motors. Acc Chem Res 38:574–582

    PubMed  CAS  Google Scholar 

  9. Toprak E, Enderlein J, Syed S et al (2006) Defocused orientation and position imaging (DOPI) of myosin V. Proc Natl Acad Sci USA 103:6495–6499

    PubMed  CAS  Google Scholar 

  10. Park H, Toprak E, Selvin PR (2007) Single-molecule fluorescence to study molecular motors. Q Rev Biophys 40:87–111

    PubMed  CAS  Google Scholar 

  11. Schwartz MA (2011) Super-resolution microscopy: a new dimension in focal adhesions. Curr Biol 21:R115–R116

    PubMed  CAS  Google Scholar 

  12. Leung BO, Chou KC (2011) Review of super-resolution fluorescence microscopy for biology. Appl Spectrosc 65:967–980

    PubMed  CAS  Google Scholar 

  13. Henriques R, Griffiths C, Hesper Rego E, Mhlanga MM (2011) PALM and STORM: unlocking live-cell super-resolution. Biopolymers 95:322–331

    PubMed  CAS  Google Scholar 

  14. Toomre D, Bewersdorf J (2010) A new wave of cellular imaging. Annu Rev Cell Dev Biol 26:285–314

    PubMed  CAS  Google Scholar 

  15. Thompson MA, Biteen JS, Lord SJ, Conley NR, Moerner WE (2010) Molecules and methods for super-resolution imaging. Methods Enzymol 475:27–59

    PubMed  CAS  Google Scholar 

  16. Betzig E, Patterson GH, Sougrat R et al (2006) Imaging intracellular fluorescent proteins at nanometer resolution. Science 313:1642–1645

    PubMed  CAS  Google Scholar 

  17. Gould TJ, Verkhusha VV, Hess ST (2009) Imaging biological structures with fluorescence photoactivation localization microscopy. Nat Protoc 4:291–308

    PubMed  CAS  Google Scholar 

  18. Shaw JE, Epand RF, Epand RM, Li Z, Bittman R, Yip CM (2006) Correlated fluorescence-atomic force microscopy of membrane domains: structure of fluorescence probes determines lipid localization. Biophys J 90:2170–2178

    PubMed  CAS  Google Scholar 

  19. Burns AR (2003) Domain structure in model membrane bilayers investigated by simultaneous atomic force microscopy and fluorescence imaging. Langmuir 19:8358–8363

    CAS  Google Scholar 

  20. Shaw JE, Slade A, Yip CM (2003) Simultaneous in situ total internal reflectance fluorescence/atomic force microscopy studies of DPPC/dPOPC microdomains in supported planar lipid bilayers. J Am Chem Soc 125:11838–11839

    PubMed  CAS  Google Scholar 

  21. Kassies R, Van der Werf KO, Lenferink A et al (2005) Combined AFM and confocal fluorescence microscope for applications in bio-nanotechnology. J Microsc 217:109–116

    PubMed  CAS  Google Scholar 

  22. Burns AR, Frankel DJ, Buranda T (2005) Local mobility in lipid domains of supported bilayers characterized by atomic force microscopy and fluorescence correlation spectroscopy. Biophys J 89:1081–1093

    PubMed  CAS  Google Scholar 

  23. Kellermayer MSZ, Karsai A, Kengyel A et al (2006) Spatially and temporally synchronized atomic force and total internal reflection fluorescence microscopy for imaging and manipulating cells and biomolecules. Biophys J 91:2665–2677

    PubMed  CAS  Google Scholar 

  24. Neugebauer U, Rosch P, Schmitt M et al (2006) On the way to nanometer-sized information of the bacterial surface by tip-enhanced Raman spectroscopy. Chemphyschem 7:1428–1430

    PubMed  CAS  Google Scholar 

  25. Shaw JE, Epand RF, Sinnathamby K et al (2006) Tracking peptide-membrane interactions: Insights from in situ coupled confocal-atomic force microscopy imaging of NAP-22 peptide insertion and assembly. J Struc Biol 155:458–469

    CAS  Google Scholar 

  26. Slade AL, Schoeniger JS, Sasaki DY, Yip CM (2006) In situ scanning probe microscopy studies of tetanus toxin-membrane interactions. Biophys J 91:4565–4574

    PubMed  CAS  Google Scholar 

  27. Shaw JE, Alattia JR, Verity JE, Prive GG, Yip CM (2006) Mechanisms of antimicrobial peptide action: Studies of indolicidin assembly at model membrane interfaces by in situ atomic force microscopy. J Struct Biol 154:42–58

    PubMed  CAS  Google Scholar 

  28. Lin WC, Blanchette CD, Ratto TV, Longo ML (2006) Lipid asymmetry in DLPC/DSPC-supported lipid bilayers: A combined AFM and fluorescence microscopy study. Biophys J 90:228–237

    PubMed  CAS  Google Scholar 

  29. Frankel DJ, Pfeiffer JR, Surviladze Z et al (2006) Revealing the topography of cellular membrane domains by combined atomic force microscopy/fluorescence imaging. Biophys J 90:2404–2413

    PubMed  CAS  Google Scholar 

  30. Chiantia S, Kahya N, Ries J, Schwille P (2006) Effects of ceramide on liquid-ordered domains investigated by simultaneous AFM and FCS. Biophys J 90:4500–4508

    PubMed  CAS  Google Scholar 

  31. Haupt BJ, Pelling AE, Horton MA (2007) Integrated confocal and scanning probe microscopy for biomedical research. Sci World J 6:1609–1618

    Google Scholar 

  32. Johnston LJ (2007) Nanoscale imaging of domains in supported lipid membranes. Langmuir 23:5886–5895

    PubMed  CAS  Google Scholar 

  33. Coban O, Burger M, Laliberte M, Ianoul A, Johnston LJ (2007) Ganglioside partitioning and aggregation in phase-separated monolayers characterized by bodipy GM1 monomer/dimer emission. Langmuir 23:6704–6711

    PubMed  CAS  Google Scholar 

  34. Coban O, Popov J, Burger M, Vobornik D, Johnston LJ (2007) Transition from nanodomains to microdomains induced by exposure of lipid monolayers to air. Biophys J 92:2842–2853

    PubMed  CAS  Google Scholar 

  35. Shaw JE, Epand RF, Hsu JCY et al (2008) Cationic peptide-induced remodelling of model membranes: direct visualization by in situ atomic force microscopy. J Struc Biol 180:563–578

    Google Scholar 

  36. Trache A, Meininger GA (2005) Atomic force-multi-optical imaging integrated microscope for monitoring molecular dynamics in live cells. J Biomed Opt 10:064023–064021–064017.

    Google Scholar 

  37. Axelrod D, Omann GM (2006) Combinatorial microscopy. Nat Rev Mol Cell Biol 7:944–952

    PubMed  CAS  Google Scholar 

  38. Casuso I, Kodera N, Le Grimellec C, Ando T, Scheuring S (2009) Contact-mode high-resolution high-speed atomic force microscopy movies of the purple membrane. Biophys J 97:1354–1361

    PubMed  CAS  Google Scholar 

  39. Miyagi A, Tsunaka Y, Uchihashi T et al (2008) Visualization of intrinsically disordered regions of proteins by high-speed atomic force microscopy. Chemphyschem 9:1859–1866

    PubMed  CAS  Google Scholar 

  40. Ando T, Uchihashi T, Kodera N et al (2008) High-speed AFM and nano-visualization of biomolecular processes. Pflugers Arch 456:211–225

    PubMed  CAS  Google Scholar 

  41. Ando T, Uchihashi T, Kodera N et al (2007) High-speed atomic force microscopy for observing dynamic biomolecular processes. J Mol Recognit 20:448–458

    PubMed  CAS  Google Scholar 

  42. Yokokawa M, Yoshimura SH, Naito Y et al (2006) Fast-scanning atomic force microscopy reveals the molecular mechanism of DNA cleavage by ApaI endonuclease. IEE Proc Nanobiotechnol 153:60–66

    PubMed  CAS  Google Scholar 

  43. Kodera N, Kinoshita T, Ito T, Ando T (2003) High-resolution imaging of myosin motor in action by a high-speed atomic force microscope. Adv Exp Med Biol 538:119–127

    PubMed  CAS  Google Scholar 

  44. Ando T, Kodera N, Naito Y et al (2003) A high-speed atomic force microscope for studying biological macromolecules in action. Chemphyschem 4:1196–1202

    PubMed  CAS  Google Scholar 

  45. Ando T, Kodera N, Takai E et al (2001) A high-speed atomic force microscope for studying biological macromolecules. Proc Natl Acad Sci USA 98:12468–12472

    PubMed  CAS  Google Scholar 

  46. Shaw JE, Oreopoulos J, Wong D, Hsu JCY, Yip CM (2006) Coupling evanescent-wave fluorescence imaging and spectroscopy with scanning probe microscopy: challenges and insights from TIRF-AFM. Surf Interface Anal 38:1459–1471

    CAS  Google Scholar 

  47. Oreopoulos J, Yip CM (2008) Combined scanning probe and total internal reflection fluorescence microscopy. Methods 46:2–10

    PubMed  CAS  Google Scholar 

  48. Kuo C, Hochstrasser RM (2011) Super-resolution microscopy of lipid bilayer phases. J Am Chem Soc 133:4664–4667

    PubMed  CAS  Google Scholar 

  49. Duim WC, Chen B, Frydman J, Moerner WE (2011) Sub-diffraction imaging of huntingtin protein aggregates by fluorescence blink-microscopy and atomic force microscopy. Chemphyschem 12:2387–2390

    PubMed  CAS  Google Scholar 

  50. Cordes T, Strackharn M, Stahl SW et al (2010) Resolving single-molecule assembled patterns with superresolution blink-microscopy. Nano Lett 10:645–651

    PubMed  CAS  Google Scholar 

  51. Gradinaru CC, Martinsson P, Aartsma TJ, Schmidt T (2004) Simultaneous atomic-force and two-photon fluorescence imaging of biological specimens in vivo. Ultramicroscopy 99:235–245

    PubMed  CAS  Google Scholar 

  52. Chon JWM, Gu M (2004) Scanning total internal reflection fluorescence microscopy under one-photon and two-photon excitation: image formation. Appl Opt 43:1063–1071

    PubMed  CAS  Google Scholar 

  53. Axelrod D, Burghardt TP, Thompson NL (1984) Total internal reflection fluorescence. Ann Rev Biophys Bioeng 13:247–268

    CAS  Google Scholar 

  54. Reichert WM, Truskey GA (1990) Total internal-reflection fluorescence (tirf) microscopy.1. Modeling cell contact region fluorescence. J Cell Sci 96:219–230

    PubMed  Google Scholar 

  55. Burmeister JS, Truskey GA, Reichert WM (1994) Quantitative-analysis of variable-angle total internal-reflection fluorescence microscopy (Va-tirfm) of cell substrate contacts. J Microsc-Oxf 173:39–51

    CAS  Google Scholar 

  56. Thompson NL, Lagerholm BC (1997) Total internal reflection fluorescence: applications in cellularbiophysics. Curr Opin Biotech 8:58–64

    PubMed  CAS  Google Scholar 

  57. Oheim M, Loerke D, Stuhmer W, Chow RH (1998) The last few milliseconds in the life of a secretory granule—Docking, dynamics and fusion visualized by total internal reflection fluorescence microscopy (TIRFM). Eur Biophys J Biophy Lett 27:83–98

    CAS  Google Scholar 

  58. Oheim M, Stuhmer W (2000) Tracking chromaffin granules on their way through the actin cortex. Eur Biophys J Biophys Lett 29:67–89

    CAS  Google Scholar 

  59. Loerke D, Preitz B, Stuhmer W, Oheim M (2000) Super-resolution measurements with evanescent-wave fluorescence excitation using variable beam incidence. J Biom Optics 5:23–30

    CAS  Google Scholar 

  60. Oheim M, Stuhmer W (2002) Multiparameter evanescent-wave Imaging in biological fluorescence microscopy. IEEE J Quantum Electr 38:142–148

    CAS  Google Scholar 

  61. Toomre D, Manstein DJ (2001) Lighting up the cell surface with evanescent wave microscopy. Trends Cell Biol 11:298–303

    PubMed  CAS  Google Scholar 

  62. Yasushi S, Uyemura T (2002) Total internal reflection fluorescence microscopy for single-molecule imaging in living cells. Cell Struct Funct 27:357–365

    Google Scholar 

  63. Axelrod D (2001) Total internal reflection fluorescence microscopy in cell biology. Traffic 2:764–774

    PubMed  CAS  Google Scholar 

  64. Moerner WE, Fromm DP (2003) Methods of single-molecule fluorescence spectroscopy and microscopy. Rev Sci Instrum 74:3597–3619

    CAS  Google Scholar 

  65. Mashanov GI, Tacon D, Knight BAE, Peckham M, Molloy JE (2003) Visualizing single molecules inside living cells using total internal reflection fluorescence microscopy. Methods 29:142–152

    PubMed  CAS  Google Scholar 

  66. Axelrod D (2003) Total internal reflection fluorescence microscopy in cell biology Methods Enzymol 361:1–33

    Google Scholar 

  67. Wazawa T, Ueda M (2005) Total internal reflection fluorescence microscopy in single molecule nanobioscience. Adv Biochem Eng Biotechnol 95:77–106

    Google Scholar 

  68. Schneckenburger H (2005) Total internal reflection fluorescence microscopy: technical innovations and novel applications. Curr Opin Biotech 16:13–18

    PubMed  CAS  Google Scholar 

  69. Mathur AB, Truskey GA, Reichert WM (2000) Total internal reflection microscopy and atomic force microscopy (TIRFM-AFM) to study stress transduction mechanisms in endothelial cells. Crit Rev Biom Eng 28:197–202

    CAS  Google Scholar 

  70. Mathur AB, Truskey GA, Reichert WM (2000) Atomic force and total internal reflection fluorescence microscopy for the study of force transmission in endothelial cells. Biophysi J 78:1725–1735

    CAS  Google Scholar 

  71. Thompson NL, McConnell HM, Burghardt TP (1984) Order in supported phospholipid monolayers detected by the dichroism of fluorescence excited with polarized evanescent illumination. Biophysi J 46:739–747

    CAS  Google Scholar 

  72. Axelrod D (1989) Fluorescence polarization microscopy. Methods Cell Biol 30:333–352

    PubMed  CAS  Google Scholar 

  73. Timbs MM, Thompson NL (1990) Slow rotational mobilities of antibodies and lipids associated with substrate-supported phospholipid monolayers as measured by polarized fluorescence photobleaching recovery. Biophys J 58:413–428

    PubMed  CAS  Google Scholar 

  74. Sund SE, Swanson JA, Axelrod D (1999) Cell membrane orientation visualized by polarized total internal reflection fluorescence. Biophys J 77:2266–2283

    PubMed  CAS  Google Scholar 

  75. Letinic K, Sebastian R, Toomre D, Rakic P (2009) Exocyst is involved in polarized cell migration and cerebral cortical development. Proc Natl Acad Sci USA 106:11342–11347

    PubMed  CAS  Google Scholar 

  76. Soderholm N, Vielfort K, Hultenby K, Aro H (2011) Pathogenic Neisseria hitchhike on the uropod of human neutrophils. PLoS One 6:e24353

    PubMed  Google Scholar 

  77. Ha T, Glass J, Enderle T, Chemla DS, Weiss S (1998) Hindered rotational diffusion and rotational jumps of single molecules. Phys Rev Lett 80:2093–2096

    CAS  Google Scholar 

  78. Ha T, Laurence TA, Chemla DS, Weiss S (1999) Polarization spectroscopy of single fluorescent molecules. J Phys Chem B 103:6839–6850

    CAS  Google Scholar 

  79. Osborne MA (2005) Real-time dipole orientational imaging as a probe of ligand-protein interactions. J Phys Chem B 109:18153–18161

    PubMed  CAS  Google Scholar 

  80. Tokimoto T, Bethea TRC, Zhou M, Ghosh I, Wirth MJ (2007) Probing orientations of single fluorescent labels on a peptide reversibly binding to the human delta-opioid receptor. Appl Spectrosc 61:130–137

    PubMed  CAS  Google Scholar 

  81. Forkey JN, Quinlan ME, Goldman YE (2000) Protein structural dynamics by single-molecule fluorescence polarization. Prog Biophys Mol Biol 74:1–35

    PubMed  CAS  Google Scholar 

  82. Forkey JN, Quinlan ME, Shaw MA, Corrie JET, Goldman YE (2003) Three-dimensional structural dynamics of myosin V by single-molecule fluorescence polarization. Nature 422:399–404

    PubMed  CAS  Google Scholar 

  83. Yildiz A, Forkey JN, McKinney SA et al (2003) Myosin V walks hand-over-hand: Single fluorophore imaging with 1.5-nm localization. Science 300:2061–2065

    PubMed  CAS  Google Scholar 

  84. Forkey JN, Quinlan ME, Goldman YE (2005) Measurement of single macromolecule orientation by total internal reflection fluorescence polarization microscopy. Biophys J 89:1261–1271

    PubMed  CAS  Google Scholar 

  85. Quinlan ME, Forkey JN, Goldman YE (2005) Orientation of the myosin light chain region by single molecule total internal reflection fluorescence polarization microscopy. Biophys J 89:1132–1142

    PubMed  CAS  Google Scholar 

  86. Rosenberg SA, Quinlan ME, Forkey JN, Goldman YE (2005) Rotational motions of macromolecules by single-molecule fluorescence microscopy. Acc Chem Res 38:583–593

    PubMed  CAS  Google Scholar 

  87. Jacobs DT, Weigert R, Grode KD, Donaldson JG, Cheney RE (2009) Myosin Vc is a molecular motor that functions in secretory granule trafficking. Mol Biol Cell 20:4471–4488

    PubMed  CAS  Google Scholar 

  88. Burghardt TP (1984) Model-independent fluorescence polarization for measuring order in a biological assembly. Biopolymers 23:2383–2406

    PubMed  CAS  Google Scholar 

  89. Schabert F, Knapp H, Karrasch S, Haring R, Engel A (1994) Confocal scanning laser—scanning probe hybrid microscope for biological applications. Ultramicroscopy 53:147–157

    Google Scholar 

  90. Lal R, Proksch R (1997) Multimodal atomic force microscopy: biological imaging using atomic force microscopy combined with light fluorescence and confocal microscopies and electrophysiologic recording. Int J Imaging Syst Tech 8:293–300

    Google Scholar 

  91. Hugel T, Holland NB, Cattani A et al (2002) Single-molecule optomechanical cycle. Science 296:1103–1106

    PubMed  Google Scholar 

  92. Nishida S, Funabashi Y, Ikai A (2002) Combination of AFM with an objective-type total internal reflection fluorescence microscope (TIRFM) for nanomanipulation of single cells. Ultramicroscopy 91:269–274

    PubMed  CAS  Google Scholar 

  93. Yip CM, Darabie AA, McLaurin J (2002) A beta 42-peptide assembly on lipid Bilayers. J Mol Biol 318:97–107

    PubMed  CAS  Google Scholar 

  94. Kodama T, Ohtani H, Arakawa H, Ikai A (2004) Atomic force microscope equipped with confocal laser scanning microscope for the spectroscopic measurement of the contact area in liquid. Chem Phys Lett 385:507–511

    CAS  Google Scholar 

  95. Yamada T, Afrin R, Arakawa H, Ikai A (2004) High sensitivity detection of protein molecules picked up on a probe of atomic force microscope based on the fluorescence detection by a total internal reflection fluorescence microscope. FEBS Lett 569:59–64

    PubMed  CAS  Google Scholar 

  96. Franz CM, Muller DJ (2005) Analyzing focal adhesion structure by atomic force microscopy. J Cell Sci 118:5315–5323

    PubMed  CAS  Google Scholar 

  97. Gaiduk A, Kuhnemuth R, Antonik M, Seidel CAM (2005) Optical characteristics of atomic force microscopy tips for single-molecule fluorescence applications. Chemphyschem 6:976–983

    PubMed  CAS  Google Scholar 

  98. Shaw JE, Epand RF, Epand RM et al (2006) Correlated fluorescence-atomic force microscopy of membrane domains: structure of fluorescence probes determines lipid localization. Biophys J 90:2170–2178

    PubMed  CAS  Google Scholar 

  99. Meller K, Theiss C (2006) Atomic force microscopy and confocal laser scanning microscopy on the cytoskeleton of permeabilised and embedded cells. Ultramicroscopy 106:320–325

    PubMed  CAS  Google Scholar 

  100. Madl J, Rhode S, Stangl H et al (2006) A combined optical and atomic force microscope for live cell investigations. Ultramicroscopy 106:645–651

    PubMed  CAS  Google Scholar 

  101. Chiantia S, Ries J, Kahya N, Schwille P (2006) Combined AFM and two-focus SFCS study of raft-exhibiting model membranes. Chemphyschem 7:2409–2418

    PubMed  CAS  Google Scholar 

  102. Blanchette CD, Lin WC, Ratto TV, Longo ML (2006) Galactosylceramide domain microstructure: Impact of cholesterol and nucleation/growth conditions. Biophys J 90:4466–4478

    PubMed  CAS  Google Scholar 

  103. Garcia-Saez AJ, Chiantia S, Schwille P (2007) Effect of line tension on the lateral organization of lipid membranes. J Biol Chem 282(46):33537–33544

    PubMed  CAS  Google Scholar 

  104. Gaiduk A, Kuhnemuth R, Felekyan S et al (2007) Fluorescence detection with high time resolution: From optical microscopy to simultaneous force and fluorescence spectroscopy. Microsc Res Techn 70:433–441

    CAS  Google Scholar 

  105. Mathur AB, Truskey GA, Reichert WM (2000) Atomic force and total internal reflection fluorescence microscopy for the study of force transmission in endothelial cells. Biophys J 78:1725–1735

    PubMed  CAS  Google Scholar 

  106. Charras GT, Horton MA (2002) Single cell mechanotransduction and its modulation analyzed by atomic force microscope indentation. Biophys J 82:2970–2981

    PubMed  CAS  Google Scholar 

  107. Terebiznik MR, Vieira OV, Marcus SL et al (2002) Elimination of host cell PtdIns(4,5)P(2) by bacterial SigD promotes membrane fission during invasion by Salmonella. Nat Cell Biol 4:766–773

    PubMed  CAS  Google Scholar 

  108. Flannagan RS, Harrison RE, Yip CM, Jaqaman K, Grinstein S (2010) Dynamic macrophage “probing” is required for the efficient capture of phagocytic targets. J Cell Biol 191:1205–1218

    PubMed  CAS  Google Scholar 

  109. Trache A, Meininger GA (2005) Atomic force-multi-optical imaging integrated microscope for monitoring molecular dynamics in live cells. J Biomed Opt 10(6):064023

    PubMed  Google Scholar 

  110. Trache A, Trzeciakowski JP, Meininger GA (2010) Mg2+ modulates integrin-extracellular matrix interaction in vascular smooth muscle cells studied by atomic force microscopy. J Mol Recognit 23:316–321

    PubMed  CAS  Google Scholar 

  111. Trache A, Lim SM (2010) Live cell response to mechanical stimulation studied by integrated optical and atomic force microscopy. J Vis Exp 4;(44). pii: 2072

    Google Scholar 

  112. Lim SM, Kreipe BA, Trzeciakowski J, Dangott L, Trache A (2010) Extracellular matrix effect on RhoA signaling modulation in vascular smooth muscle cells. Exp Cell Res 316:2833–2848

    PubMed  CAS  Google Scholar 

  113. Trache A, Lim SM (2009) Integrated microscopy for real-time imaging of mechanotransduction studies in live cells. J Biomed Opt 14:034024

    PubMed  Google Scholar 

  114. Sarkar A, Robertson RB, Fernandez JM (2004) Simultaneous atomic force microscope and fluorescence measurements of protein unfolding using a calibrated evanescent wave. Proc Natl Acad Sci USA 101:12882–12886

    PubMed  CAS  Google Scholar 

  115. Delcea M, Schmidt S, Palankar R et al (2010) Mechanobiology: correlation between mechanical stability of microcapsules studied by AFM and impact of cell-induced stresses. Small 6:2858–2862

    PubMed  CAS  Google Scholar 

  116. Stadler B, Blattler TM, Franco-Obregon A (2010) Time-lapse imaging of in vitro myogenesis using atomic force microscopy. J Microsc 237:63–69

    PubMed  CAS  Google Scholar 

  117. Epand RM, Vuong P, Yip CM, Maekawa S, Epand RF (2004) Cholesterol-dependent partitioning of PtdIns(4,5)P2 into membrane domains by the N-terminal fragment of NAP-22 (neuronal axonal myristoylated membrane protein of 22 kDa). Biochem J 379:527–532

    PubMed  CAS  Google Scholar 

  118. Hollars CW, Dunn RC (1998) Submicron structure in L-alpha-dipalmitoylphosphatidylcholine monolayers and bilayers probed with confocal, atomic force, and near-field microscopy. Biophys J 75:342–353

    PubMed  CAS  Google Scholar 

  119. Yuan C, Johnston LJ (2002) Phase evolution in cholesterol/DPPC monolayers: atomic force microscopy and near field scanning optical microscopy studies. J Microsc 205:136–146

    PubMed  CAS  Google Scholar 

  120. Burgos P, Lu Z, Ianoul A, Hnatovsky C et al (2003) Near-field scanning optical microscopy probes: a comparison of pulled and double-etched bent NSOM probes for fluorescence imaging of biological samples. J Microsc 211:37–47

    PubMed  CAS  Google Scholar 

  121. Tokumasu F, Hwang J, Dvorak JA (2004) Heterogeneous molecular distribution in supported multicomponent lipid bilayers. Langmuir 20:614–618

    PubMed  CAS  Google Scholar 

  122. Ianoul A, Street M, Grant D et al (2004) Near-field scanning fluorescence microscopy study of ion channel clusters in cardiac myocyte membranes. Biophys J 87:3525–3535

    PubMed  CAS  Google Scholar 

  123. Oreopoulos J, Yip CM (2009) Combinatorial microscopy for the study of protein-membrane interactions in supported lipid bilayers: Order parameter measurements by combined polarized TIRFM/AFM. J Struct Biol 168:21–36

    PubMed  CAS  Google Scholar 

  124. Oreopoulos J, Epand RF, Epand RM, Yip CM (2010) Peptide-induced domain formation in supported lipid bilayers: direct evidence by combined atomic force and polarized total internal reflection fluorescence microscopy. Biophys J 98:815–823

    PubMed  CAS  Google Scholar 

  125. Mo GC, Yip CM (2009) Supported lipid bilayer templated J-aggregate growth: role of stabilizing cation-pi interactions and headgroup packing. Langmuir 25:10719–10729

    PubMed  CAS  Google Scholar 

  126. Fidder H, Terpstra J, Wiersma DA (1991) Dynamics of Frenkel excitons in disordered molecular aggregates. J Chem Phys 94:6895–6907

    CAS  Google Scholar 

  127. Stuurman N, Amodaj N, Vale RD (2007) Micro-manager: open source software for light microscope imaging. Microsc Today 15:42–43

    Google Scholar 

  128. Collins TJ (2007) ImageJ for microscopy. Biotechniques 43:25–30

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher M. Yip .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Yip, C.M. (2013). Correlative Optical and Scanning Probe Microscopies for Mapping Interactions at Membranes. In: Sousa, A., Kruhlak, M. (eds) Nanoimaging. Methods in Molecular Biology, vol 950. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-137-0_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-137-0_24

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-136-3

  • Online ISBN: 978-1-62703-137-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics