Skip to main content

High Data Output Method for 3-D Correlative Light-Electron Microscopy Using Ultrathin Cryosections

  • Protocol
  • First Online:
Nanoimaging

Abstract

Investigation of intracellular dynamics requires a detailed description of the molecular topography and ultrastructural morphology of the cell, for example, the position of a protein in relation to a given compartment of the cell and the morphology of the compartment. Standard fluorescence light microscopy (FLM) localizes proteins in living or fixed cells with a resolution of few hundreds of nanometers, but the unlabeled cellular context is partially missing. Electron microscopy (EM) techniques, such as immuno-EM, reveal protein topology with a few tens of nanometer resolution and retain the cellular context. However, EM analysis shows shortcomings compared to FLM, such as, lower statistical output, applicability only to fixed cells, and higher technical difficulties. To bridge the gap between fluorescent cell imaging and EM, several laboratories have developed methods for correlative light-electron microscopy (CLEM). In CLEM, a limited number of fluorescently labeled cell compartments are first imaged by light microscopy and then visualized and analyzed by EM. Recently, two different CLEM approaches using the EM cryo-immunogold method have been developed to extend the analysis to a high number of regions of interest and to correlate the topology of specific antigens. In this chapter, we describe one of these methods, the High Data Output CLEM (HDO-CLEM) approach. The major benefits of HDO-CLEM are the possibility to (1) correlate several hundreds of events at the same time, (2) perform three-dimensional (3D) correlation, (3) immunolabel both endogenous and recombinantly tagged proteins at the same time, and (4) combine the high data analysis capability of FLM with the high precision-accuracy of transmission electron microscopy in a CLEM hybrid morphometric analysis. We have identified and optimized critical steps in sample preparation, defined routines for sample analysis and retracing of regions of interest, developed software for semi/fully automatic 3D FLM reconstruction and defined preliminary conditions for a hybrid light/electron microscopy morphometry approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hell SW (2007) Far-field optical nanoscopy. Science 316:1153–1158

    Article  PubMed  CAS  Google Scholar 

  2. Watanabe S, Punge A, Hollopeter G et al (2011) Protein localization in electron micrographs using fluorescence nanoscopy. Nat Methods 8:80–84

    Article  PubMed  CAS  Google Scholar 

  3. Vicidomini G, Gagliani MC, Canfora M et al (2008) High data output and automated 3D correlative light-electron microscopy method. Traffic 9:1828–1838

    Article  PubMed  CAS  Google Scholar 

  4. Vicidomini G, Gagliani MC, Cortese K et al (2010) A novel approach for correlative light electron microscopy analysis. Microsc Res Tech 73:215–224

    PubMed  Google Scholar 

  5. Kukulski W, Schorb M, Welsch S et al (2011) Correlated fluorescence and 3D electron microscopy with high sensitivity and spatial precision. J Cell Biol 192:111–119

    Article  PubMed  CAS  Google Scholar 

  6. Sartori A, Gatz R, Beck F et al (2007) Correlative microscopy: bridging the gap between fluorescence light microscopy and cryo-electron tomography. J Struct Biol 160:135–145

    Article  PubMed  Google Scholar 

  7. Ellinger A, Meisslitzer-Ruppitsch C, Rohrl C, Neumuller J, Pavelka M (2009) Photooxidation technology for correlated light and electron microscopy. J Microsc 235:322–335

    Article  PubMed  Google Scholar 

  8. Gaietta G, Deerinck TJ, Adams SR et al (2002) Multicolor and electron microscopic imaging of connexin trafficking. Science 296:503–507

    Article  PubMed  CAS  Google Scholar 

  9. Grabenbauer M, Geerts WJC, Fernadez-Rodriguez J et al (2005) Correlative microscopy and electron tomography of GFP through photooxidation. Nat Methods 2:857–862

    Article  PubMed  CAS  Google Scholar 

  10. Takizawa T, Suzuki K, Robinson JM (1998) Correlative microscopy using FluoroNanogold on ultrathin cryosections. Proof of principle. J Histochem Cytochem 46:1097–1102

    Article  PubMed  CAS  Google Scholar 

  11. Brown E, Verkade P (2010) The use of markers for correlative light electron microscopy. Protoplasma 244:91–97

    Article  PubMed  Google Scholar 

  12. van Rijnsoever C, Oorschot V, Klumperman J (2008) Correlative light-electron microscopy (CLEM) combining live-cell imaging and immunolabeling of ultrathin cryosections. Nat Methods 5:973–980

    Article  PubMed  Google Scholar 

  13. Shu X, Lev-Ram V, Deerinck TJ et al (2011) A genetically encoded tag for correlated light and electron microscopy of intact cells, tissues, and organisms. PLoS Biol 9:e1001041

    Article  PubMed  CAS  Google Scholar 

  14. Tokuyasu KT (1980) Immunochemistry on ultrathin frozen sections. Histochem J 12:381–403

    Article  PubMed  CAS  Google Scholar 

  15. Slot JW, Geuze HJ (2007) Cryosectioning and immunolabeling. Nat Protoc 2:2480–2491

    Article  PubMed  CAS  Google Scholar 

  16. van Donselaar E, Posthuma G, Zeuschner D, Humbel BM, Slot JW (2007) Immunogold labeling of cryosections from high-pressure frozen cells. Traffic 8:471–485

    Article  PubMed  Google Scholar 

  17. Abramoff MD, Magalhaes PJ, Ram SJ (2004) Image processing with image. J Biophotonics Int 11:36–42

    Google Scholar 

  18. Mattioli L, Anelli T, Fagioli C et al (2006) ER storage diseases: a role for ERGIC-53 in controlling the formation and shape of Russell bodies. J Cell Sci 119:2532–2541

    Article  PubMed  CAS  Google Scholar 

  19. Russell W (1890) An address on a characteristic organism of cancer. Br Med J 2:1356–1360

    Article  PubMed  CAS  Google Scholar 

  20. Kremer JR, Mastronarde DN, McIntosh JR (1996) Computer visualization of three-dimensional image data using IMOD. J Struct Biol 116:71–76

    Article  PubMed  CAS  Google Scholar 

  21. Thevenaz P, Unser M (2007) User-friendly semiautomated assembly of accurate image mosaics in microscopy. Microsc Res Tech 70:135–146

    Article  PubMed  Google Scholar 

  22. Thevenaz P, Ruttimann UE, Unser M (1998) A pyramid approach to subpixel registration based on intensity. IEEE Trans Image Process 7:27–41

    Article  PubMed  CAS  Google Scholar 

  23. William EL, Harvey EC (1987) Marching cubes: a high resolution 3D surface construction algorithm. Comput Graphics 21:163–168

    Article  Google Scholar 

  24. Dima AA, Elliott JT, Filliben JJ et al (2011) Comparison of segmentation algorithms for fluorescence microscopy images of cells. Cytometry A 79:545–559

    PubMed  Google Scholar 

  25. Ridler T, Calvard S (1978) Picture thresholding using an iterative selection method. IEEE Trans Syst Man Cybernet 8:629–632

    Google Scholar 

  26. Chow CK, Kaneko T (1972) Automatic boundary detection of the left ventricle from cineangiograms. Comput Biomed Res 5:388–410

    Article  PubMed  CAS  Google Scholar 

  27. Bertero M, Boccacci P, Desidera G, Vicidomini G (2009) Image deblurring with Poisson data: from cells to galaxies. Inverse Probl 25(12)

    Google Scholar 

  28. Vicidomini G, Boccacci P, Diaspro A, Bertero M (2009) Application of the split-gradient method to 3D image deconvolution in fluorescence microscopy. J Microsc 234:47–61

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The Authors thank all members of Centro di Ricerca MicroSCoBio for support and discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlo Tacchetti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Cortese, K., Vicidomini, G., Gagliani, M.C., Boccacci, P., Diaspro, A., Tacchetti, C. (2013). High Data Output Method for 3-D Correlative Light-Electron Microscopy Using Ultrathin Cryosections. In: Sousa, A., Kruhlak, M. (eds) Nanoimaging. Methods in Molecular Biology, vol 950. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-137-0_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-137-0_23

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-136-3

  • Online ISBN: 978-1-62703-137-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics