Skip to main content
Book cover

Nanoimaging pp 397–416Cite as

Correlative Fluorescence and EFTEM Imaging of the Organized Components of the Mammalian Nucleus

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 950))

Abstract

The cell nucleus contains many distinct subnuclear compartments, domains, and bodies that vary in their composition, structure, and function. While the cellular constituents that occupy the subnuclear regions may be well known, defining the structural details of the molecular assembly of the constituents has been more difficult. A correlative fluorescence and energy-filtering transmission electron microscopy (EFTEM) imaging method has the ability to provide these details. The correlative microscopy method described here allows the tracking of subnuclear structures from specific cells by fluorescence microscopy and then, using electron energy loss imaging in the transmission electron microscope, reveals the ultrastructural features of the nuclear components along with endogenous elemental information that relates directly to the biochemical composition of the structure. The ultrastructural features and composition of well-characterized PML bodies and interchromatin granule clusters are compared to those of ligand-activated glucocorticoid receptor (GR) foci, with GR foci containing fibrogranular nucleic acid-containing features and PML bodies being devoid of nucleic acid.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Betzig E, Patterson GH, Sougrat R, Lindwasser OW, Olenych S, Bonifacino JS, Davidson MW, Lippincott-Schwartz J, Hess HF (2006) Imaging intracellular fluorescent proteins at nanometer resolution. Science 313:1642–1645

    Article  PubMed  CAS  Google Scholar 

  2. Watanabe S, Punge A, Hollopeter G, Willig KI, Hobson RJ, Davis MW, Hell SW, Jorgensen EM (2011) Protein localization in electron micrographs using fluorescence nanoscopy. Nat Methods 8:80–84

    Article  PubMed  CAS  Google Scholar 

  3. Sosinsky GE, Giepmans BN, Deerinck TJ, Gaietta GM, Ellisman MH (2007) Markers for correlated light and electron microscopy. Methods Cell Biol 79:575–591

    Article  PubMed  CAS  Google Scholar 

  4. Giepmans BN (2008) Bridging fluorescence microscopy and electron microscopy. Histochem Cell Biol 130:211–217

    Article  PubMed  CAS  Google Scholar 

  5. Kireev I, Lakonishok M, Liu W, Joshi VN, Powell R, Belmont AS (2008) In vivo immunogold labeling confirms large-scale chromatin folding motifs. Nat Methods 5:311–313

    PubMed  CAS  Google Scholar 

  6. Kukulski W, Schorb M, Welsch S, Picco A, Kaksonen M, Briggs JA (2011) Correlated fluorescence and 3D electron microscopy with high sensitivity and spatial precision. J Cell Biol 192:111–119

    Article  PubMed  CAS  Google Scholar 

  7. Deerinck TJ, Giepmans BN, Smarr BL, Martone ME, Ellisman MH (2007) Light and electron microscopic localization of multiple proteins using quantum dots. Methods Mol Biol 374:43–53

    PubMed  CAS  Google Scholar 

  8. Giepmans BN, Deerinck TJ, Smarr BL, Jones YZ, Ellisman MH (2005) Correlated light and electron microscopic imaging of multiple endogenous proteins using Quantum dots. Nat Methods 2:743–749

    Article  PubMed  CAS  Google Scholar 

  9. Nisman R, Dellaire G, Ren Y, Li R, Bazett-Jones DP (2004) Application of quantum dots as probes for correlative fluorescence, conventional, and energy-filtered transmission electron microscopy. J Histochem Cytochem 52:13–18

    Article  PubMed  CAS  Google Scholar 

  10. Grabenbauer M, Geerts WJ, Fernadez-Rodriguez J, Hoenger A, Koster AJ, Nilsson T (2005) Correlative microscopy and electron tomography of GFP through photooxidation. Nat Methods 2:857–862

    Article  PubMed  CAS  Google Scholar 

  11. Shu X, Lev-Ram V, Deerinck TJ, Qi Y, Ramko EB, Davidson MW, Jin Y, Ellisman MH, Tsien RY (2011) A genetically encoded tag for correlated light and electron microscopy of intact cells, tissues, and organisms. PLoS Biol 9:e1001041

    Article  PubMed  CAS  Google Scholar 

  12. Ren Y, Kruhlak MJ, Bazett-Jones DP (2003) Same serial section correlative light and energy-filtered transmission electron microscopy. J Histochem Cytochem 51:605–612

    Article  PubMed  CAS  Google Scholar 

  13. Spector DL (2001) Nuclear domains. J Cell Sci 114:2891–2893

    PubMed  CAS  Google Scholar 

  14. Spector DL (2006) SnapShot: cellular bodies. Cell 127:1071

    Article  PubMed  Google Scholar 

  15. Zhao R, Bodnar MS, Spector DL (2009) Nuclear neighborhoods and gene expression. Curr Opin Genet Dev 19:172–179

    Article  PubMed  CAS  Google Scholar 

  16. Lallemand-Breitenbach V, de The H (2010) PML nuclear bodies. Cold Spring Harb Perspect Biol 2:a000661

    Article  PubMed  Google Scholar 

  17. Bazett-Jones DP, Hendzel MJ (1999) Electron spectroscopic imaging of chromatin. Methods 17:188–200

    Article  PubMed  CAS  Google Scholar 

  18. Bazett-Jones DP, Li R, Fussner E, Nisman R, Dehghani H (2008) Elucidating chromatin and nuclear domain architecture with electron spectroscopic imaging. Chromosome Res 16:397–412

    Article  PubMed  CAS  Google Scholar 

  19. Spencer CA, Kruhlak MJ, Jenkins HL, Sun X, Bazett-Jones DP (2000) Mitotic transcription repression in vivo in the absence of nucleosomal chromatin condensation. J Cell Biol 150:13–26

    Article  PubMed  CAS  Google Scholar 

  20. Kruhlak MJ, Celeste A, Dellaire G, Fernandez-Capetillo O, Muller WG, McNally JG, Bazett-Jones DP, Nussenzweig A (2006) Changes in chromatin structure and mobility in living cells at sites of DNA double-strand breaks. J Cell Biol 172:823–834

    Article  PubMed  CAS  Google Scholar 

  21. Eskiw CH, Rapp A, Carter DR, Cook PR (2008) RNA polymerase II activity is located on the surface of protein-rich transcription factories. J Cell Sci 121:1999–2007

    Article  PubMed  CAS  Google Scholar 

  22. Eskiw CH, Fraser P (2011) Ultrastructural study of transcription factories in mouse erythroblasts. J Cell Sci 124:3676–3683

    Article  PubMed  CAS  Google Scholar 

  23. Hendzel MJ, Kruhlak MJ, Bazett-Jones DP (1998) Organization of highly acetylated chromatin around sites of heterogeneous nuclear RNA accumulation. Mol Biol Cell 9:2491–2507

    PubMed  CAS  Google Scholar 

  24. Boisvert FM, Hendzel MJ, Bazett-Jones DP (2000) Promyelocytic leukemia (PML) nuclear bodies are protein structures that do not accumulate RNA. J Cell Biol 148:283–292

    Article  PubMed  CAS  Google Scholar 

  25. Dellaire G, Bazett-Jones DP (2004) PML nuclear bodies: dynamic sensors of DNA damage and cellular stress. Bioessays 26:963–977

    Article  PubMed  CAS  Google Scholar 

  26. Eskiw CH, Dellaire G, Mymryk JS, Bazett-Jones DP (2003) Size, position and dynamic behavior of PML nuclear bodies following cell stress as a paradigm for supramolecular trafficking and assembly. J Cell Sci 116:4455–4466

    Article  PubMed  CAS  Google Scholar 

  27. Htun H, Barsony J, Renyi I, Gould DL, Hager GL (1996) Visualization of glucocorticoid receptor translocation and intranuclear organization in living cells with a green fluorescent protein chimera. Proc Natl Acad Sci USA 93:4845–4850

    Article  PubMed  CAS  Google Scholar 

  28. Lamond AI, Spector DL (2003) Nuclear speckles: a model for nuclear organelles. Nat Rev Mol Cell Biol 4:605–612

    Article  PubMed  CAS  Google Scholar 

  29. Thiry M (1993) Differential location of nucleic acids within interchromatin granule clusters. Eur J Cell Biol 62:259–269

    PubMed  CAS  Google Scholar 

  30. Pandit S, Wang D, Fu XD (2008) Functional integration of transcriptional and RNA processing machineries. Curr Opin Cell Biol 20:260–265

    Article  PubMed  CAS  Google Scholar 

  31. Spector, D. L., Lamond, A. I. (2011) Nuclear speckles. Cold Spring Harb Perspect Biol. 3.

    Google Scholar 

  32. Leapman RD, Kocsis E, Zhang G, Talbot TL, Laquerriere P (2004) Three-dimensional distributions of elements in biological samples by energy-filtered electron tomography. Ultramicroscopy 100:115–125

    Article  PubMed  CAS  Google Scholar 

  33. Aronova MA, Kim YC, Harmon R, Sousa AA, Zhang G, Leapman RD (2007) Three-dimensional elemental mapping of phosphorus by quantitative electron spectroscopic tomography (QuEST). J Struct Biol 160:35–48

    Article  PubMed  CAS  Google Scholar 

  34. Leapman RD, Aronova MA (2007) Localizing specific elements bound to macromolecules by EFTEM. Methods Cell Biol 79:593–613

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The EFTEM images were collected with generous support from David Bazett-Jones. Ying Ren helped prepare the samples, and Michael Hendzel and Alioscka Sousa provided helpful critical reading of the manuscript. Maria Aronova and Richard Leapman generously provided advice, and access to multiple EFTEM microscopes. This research was supported in part by the Intramural Research Program of the NIH, National Cancer Institute, Center for Cancer Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael J. Kruhlak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Kruhlak, M.J. (2013). Correlative Fluorescence and EFTEM Imaging of the Organized Components of the Mammalian Nucleus. In: Sousa, A., Kruhlak, M. (eds) Nanoimaging. Methods in Molecular Biology, vol 950. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-137-0_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-137-0_22

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-136-3

  • Online ISBN: 978-1-62703-137-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics