Skip to main content

Live-Cell Imaging of Vesicle Trafficking and Divalent Metal Ions by Total Internal Reflection Fluorescence (TIRF) Microscopy

  • Protocol
  • First Online:
Nanoimaging

Part of the book series: Methods in Molecular Biology ((MIMB,volume 950))

Abstract

Total internal reflection fluorescence (TIRF) microscopy is an especially powerful tool for visualizing live cellular events. Fluorescent molecules alone provide broad information about the expression and localization of proteins and other molecules; however, the temporal and spatial resolution is confounded by signal from outside the area of interest and the intensity of the illumination required. TIRF overcomes this limitation by using the reflective properties of a laser beam to illuminate a narrow (<100 nm) strip at the surface of a cell with a relatively low powered evanescent wave, thus making it possible to measure events occurring specifically at the plasma membrane such as exocytosis, single molecule interactions, and ionic changes during signal transduction. Here we describe some of the methods for using TIRF microscopy to study the processes involved in exocytosis from excitable cells (i.e., neurons, endocrine, neuroendocrine, and exocrine cells) and the release of physiologically active substances (i.e., neurotransmitters, hormones, and mucus).

The failure of regulated exocytosis is associated with various diseases such as allergy, brain dysfunction, and endocrine illness. Diabetes mellitus, which is due to an absolute (type I) or relative (type II) deficiency of insulin secretion from pancreatic β-cells, is a major area of therapeutic interest. Insulin is stored in dense core vesicles with Zn2+ ions in pancreatic β-cells. Insulin secretion is regulated by plasma glucose concentration which acts through intracellular metabolism to influence intracellular [Ca2+]. However, the precise molecular mechanisms controlling insulin granule movement towards, and fusion at, the plasma membrane remain only partially understood. To tackle this problem, we have used live cell imaging techniques to image regulated exocytosis in single living β-cells alongside intracellular Ca2+ and Zn2+ concentrations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Axelrod D (1981) Cell-substrate contacts illuminated by total internal reflection fluorescence. J Cell Biol 89:141–145

    Article  PubMed  CAS  Google Scholar 

  2. Axelrod D, Burghardt TP, Thompson NL (1984) Total internal reflection fluorescence. Annu Rev Biophys Bioeng 13:247–268

    Article  PubMed  CAS  Google Scholar 

  3. Ivarsson R, Jing X, Waselle L, Regazzi R, Renstrom E (2005) Myosin 5a controls insulin granule recruitment during late-phase secretion. Traffic 6:1027–1035

    Article  PubMed  CAS  Google Scholar 

  4. Kasai K, Ohara-Imaizumi M, Takahashi N et al (2005) Rab27a mediates the tight docking of insulin granules onto the plasma membrane during glucose stimulation. J Clin Invest 115:388–396

    PubMed  CAS  Google Scholar 

  5. Tomas A, Meda P, Regazzi R, Pessin JE, Halban PA (2008) Munc 18-1 and granuphilin collaborate during insulin granule exocytosis. Traffic 9:813–832

    Article  PubMed  CAS  Google Scholar 

  6. Wang Z, Thurmond DC (2009) Mechanisms of biphasic insulin-granule exocytosis—roles of the cytoskeleton, small GTPases and SNARE proteins. J Cell Sci 122:893–903

    Article  PubMed  CAS  Google Scholar 

  7. Cali C, Marchaland J, Regazzi R, Bezzi P (2008) SDF 1-alpha (CXCL12) triggers glutamate exocytosis from astrocytes on a millisecond time scale: imaging analysis at the single-vesicle level with TIRF microscopy. J Neuroimmunol 198:82–91

    Article  PubMed  CAS  Google Scholar 

  8. Becherer U, Moser T, Stuhmer W, Oheim M (2003) Calcium regulates exocytosis at the level of single vesicles. Nat Neurosc 6:846–853

    Article  CAS  Google Scholar 

  9. Lang T, Wacker I, Steyer J et al (1997) Ca2+-triggered peptide secretion in single cells imaged with green fluorescent protein and evanescent-wave microscopy. Neuron 18:857–863

    Article  PubMed  CAS  Google Scholar 

  10. Ohara-Imaizumi M, Nishiwaki C, Kikuta T, Nagai S, Nakamichi Y, Nagamatsu S (2004) TIRF imaging of docking and fusion of single insulin granule motion in primary rat pancreatic beta-cells: different behaviour of granule motion between normal and Goto-Kakizaki diabetic rat beta-cells. Biochem J 381:13–18

    Article  PubMed  CAS  Google Scholar 

  11. Steyer JA, Almers W (1999) Tracking single secretory granules in live chromaffin cells by evanescent-field fluorescence microscopy. Biophys J 76:2262–2271

    Article  PubMed  CAS  Google Scholar 

  12. Taraska JW, Perrais D, Ohara-Imaizumi M, Nagamatsu S, Almers W (2003) Secretory granules are recaptured largely intact after stimulated exocytosis in cultured endocrine cells. Proc Natl Acad Sci USA 100:2070–2075

    Article  PubMed  CAS  Google Scholar 

  13. Tsuboi T, Zhao C, Terakawa S, Rutter GA (2000) Simultaneous evanescent wave imaging of insulin vesicle membrane and cargo during a single exocytotic event. Curr Biol 10:1307–1310

    Article  PubMed  CAS  Google Scholar 

  14. Miyazaki J, Araki K, Yamato E et al (1990) Establishment of a pancreatic beta cell line that retains glucose-inducible insulin secretion: special reference to expression of glucose transporter isoforms. Endocrinology 127:126–132

    Article  PubMed  CAS  Google Scholar 

  15. Nagai T, Ibata K, Park ES, Kubota M, Mikoshiba K, Miyawaki A (2002) A variant of yellow fluorescent protein with fast and efficient maturation for cell-biological applications. Nat Biotechnol 20:87–90

    Article  PubMed  CAS  Google Scholar 

  16. He TC, Zhou S, da Costa LT, Yu J, Kinzler KW, Vogelstein B (1998) A simplified system for generating recombinant adenoviruses. Proc Natl Acad Sci USA 95:2509–2514

    Article  PubMed  CAS  Google Scholar 

  17. Diraison F, Motakis E, Parton LE, Nason GP, Leclerc I, Rutter GA (2004) Impact of adenoviral transduction with SREBP1c or AMPK on pancreatic islet gene expression profile: analysis with oligonucleotide microarrays. Diabetes 53(Suppl 3):S84–S91

    Article  PubMed  CAS  Google Scholar 

  18. Ainscow EK, Zhao C, Rutter GA (2000) Acute overexpression of lactate dehydrogenase-A perturbs beta-cell mitochondrial metabolism and insulin secretion. Diabetes 49:1149–1155

    Article  PubMed  CAS  Google Scholar 

  19. Ravier MA, Rutter GA (2010) Isolation and culture of mouse pancreatic islets for ex vivo imaging studies with trappable or recombinant fluorescent probes. Methods Mol Biol 633:171–184

    Article  PubMed  CAS  Google Scholar 

  20. Haugland RP (2009) Hand book of fluorescent probes and research products. Molecular Probes, Eugene

    Google Scholar 

  21. Tsuboi T, Ravier MA, Parton LE, Rutter GA (2006) Sustained exposure to high glucose concentrations modifies glucose signaling and the mechanics of secretory vesicle fusion in primary rat pancreatic beta-cells. Diabetes 55:1057–1065

    Article  PubMed  CAS  Google Scholar 

  22. Tsuboi T, Rutter GA (2003) Multiple forms of “kiss-and-run” exocytosis revealed by evanescent wave microscopy. Curr Biol 13:563–567

    Article  PubMed  CAS  Google Scholar 

  23. Parmer RJ, Mahata M, Mahata S, Sebald MT, O’Connor DT, Miles LA (1997) Tissue plasminogen activator (t-PA) is targeted to the regulated secretory pathway. Catecholamine storage vesicles as a reservoir for the rapid release of t-PA. J Biol Chem 272:1976–1982

    Article  PubMed  CAS  Google Scholar 

  24. Tsuboi T, McMahon HT, Rutter GA (2004) Mechanisms of dense core vesicle recapture following “kiss and run” (“cavicapture”) exocytosis in insulin-secreting cells. J Biol Chem 279:47115–47124

    Article  PubMed  CAS  Google Scholar 

  25. Bancila V, Nikonenko I, Dunant Y, Bloc A (2004) Zinc inhibits glutamate release via activation of pre-synaptic K channels and reduces ischaemic damage in rat hippocampus. J Neurochem 90:1243–1250

    Article  PubMed  CAS  Google Scholar 

  26. Bloc A, Cens T, Cruz H, Dunant Y (2000) Zinc-induced changes in ionic currents of clonal rat pancreatic-cells: activation of ATP-sensitive K+ channels. J Physiol 529(Pt 3):723–734

    Article  PubMed  CAS  Google Scholar 

  27. Nicolson TJ, Bellomo EA, Wijesekara N et al (2009) Insulin storage and glucose homeostasis in mice null for the granule zinc transporter ZnT8 and studies of the type 2 diabetes-associated variants. Diabetes 58:2070–2083

    Article  PubMed  CAS  Google Scholar 

  28. Collins SC, Hoppa MB, Walker JN et al (2010) Progression of diet-induced diabetes in C57BL6J mice involves functional dissociation of Ca2(+) channels from secretory vesicles. Diabetes 59:1192–1201

    Article  PubMed  CAS  Google Scholar 

  29. Vinkenborg JL, Nicolson TJ, Bellomo EA, Koay MS, Rutter GA, Merkx M (2009) Genetically encoded FRET sensors to monitor intracellular Zn2+ homeostasis. Nat Methods 6:737–740

    Article  PubMed  CAS  Google Scholar 

  30. Miller PS, Beato M, Harvey RJ, Smart TG (2005) Molecular determinants of glycine receptor alphabeta subunit sensitivities to Zn2+-mediated inhibition. J Physiol 566:657–670

    Article  PubMed  CAS  Google Scholar 

  31. Hanas JS, Larabee JL, Hocker JR (2005) Zinc finger interactions with metal and other small molecules. In: Iuchi S, Kuldell N (eds) Zinc Finger proteins: from atomic contact to cellular function. Landes Bioscience, Austin

    Google Scholar 

  32. Ravier MA, Tsuboi T, Rutter GA (2008) Imaging a target of Ca2+ signalling: dense core granule exocytosis viewed by total internal reflection fluorescence microscopy. Methods 46:233–238

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guy A. Rutter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Loder, M.K., Tsuboi, T., Rutter, G.A. (2013). Live-Cell Imaging of Vesicle Trafficking and Divalent Metal Ions by Total Internal Reflection Fluorescence (TIRF) Microscopy. In: Sousa, A., Kruhlak, M. (eds) Nanoimaging. Methods in Molecular Biology, vol 950. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-137-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-137-0_2

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-136-3

  • Online ISBN: 978-1-62703-137-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics