Skip to main content
Book cover

Nanoimaging pp 315–341Cite as

Atomic Force Microscopy Imaging of Macromolecular Complexes

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 950))

Abstract

This chapter reviews amplitude modulation (AM) AFM in air and its applications to high-resolution imaging and interpretation of macromolecular complexes. We discuss single DNA molecular imaging and DNA–protein interactions, such as those with topoisomerases and RNA polymerase. We show how relative humidity can have a major influence on resolution and contrast and how it can also affect conformational switching of supercoiled DNA. Four regimes of AFM tip–sample interaction in air are defined and described, and relate to water perturbation and/or intermittent mechanical contact of the tip with either the molecular sample or the surface. Precise control and understanding of the AFM operational parameters is shown to allow the user to switch between these different regimes: an interpretation of the origins of topographical contrast is given for each regime. Perpetual water contact is shown to lead to a high-resolution mode of operation, which we term SASS (small amplitude small set-point) imaging, and which maximizes resolution while greatly decreasing tip and sample wear and any noise due to perturbation of the surface water. Thus, this chapter provides sufficient information to reliably control the AFM in the AM AFM mode of operation in order to image both heterogeneous samples and single macromolecules including complexes, with high resolution and with reproducibility. A brief introduction to AFM, its versatility and applications to biology is also given while providing references to key work and general reviews in the field.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Binnig G, Quate CF, Gerber C (1986) Atomic force microscope. Phy Rev Lett 56:930–933

    Article  Google Scholar 

  2. Quate CF (1994) The AFM as a tool for surface imaging. Surf Sci 299–300:980–995

    Article  Google Scholar 

  3. Bustamante C, Keller D (1995) Scanning force microscopy in biology. Physics today 48:33–38

    Article  Google Scholar 

  4. Hansma HG, Hoh JH (1994) Biomolecular imaging with the atomic force microscope. Ann Rev Biophy Biomol Struc 23:115–140

    Article  CAS  Google Scholar 

  5. Garcia R, Perez R (2002) Dynamic atomic force microscopy methods. Surf Sci Rep 47:197–301

    Article  CAS  Google Scholar 

  6. Giessibl FJ (2003) Advances in atomic force microscopy. Rev Modern Physics 75:949–983

    Article  CAS  Google Scholar 

  7. Israelachvili J (1991) Intermol. & Surf. Forces. Academic, New York

    Google Scholar 

  8. Kienbergera F, Costab TL, Zhua R, Kadad G, Reithmayere M, Chtcheglovaa L, Rankla C, Pachecof BFA, Thalhammerb S et al (2007) Dynamic force microscopy imaging of plasmid DNA and viral RNA. Biomaterials 28:2403–2411

    Article  Google Scholar 

  9. Zhong Q, Innlss D, Kjoller K, Elings VB (1993) Fractured polymer/silica fiber surface studied by tapping mode atomic force microscopy. Surf Sci Lett 290:L688–L692

    Article  CAS  Google Scholar 

  10. Hansma PK, Cleveland JP, Radmacher M et al (1994) Tapping mode atomic force microscopy in liquids. Appl Phy Lett 64:1738–1740

    Article  CAS  Google Scholar 

  11. Sahin O, Magonov S, Su C, Quate CF, Solgaard O (2007) An atomic force microscope tip designed to measure time-varying nanomechanical forces. Nat Nanotech 2:507–514

    Article  Google Scholar 

  12. Proksch R (2006) Multi-frequency, repulsive mode amplitude modulated atomic force microscopy. Appl Phys Lett 89:113121–113123

    Article  Google Scholar 

  13. Francis LW, Lewis PD, Wright CJ, Conlan RS (2010) Atomic force microscopy comes of age. Biol Cell 102:133–143

    CAS  Google Scholar 

  14. Parot P, Dufrene YF, Hinterdorfer P et al (2007) Past, present and future of atomic force microscopy in life sciences and medicine. J Mol Recog 20:418–431

    Article  CAS  Google Scholar 

  15. Giessibl FJ (1995) Atomic Resolution of the Silicon (111)-(7x7) Surface by Atomic Force Microscopy. Science 267:68–71

    Article  PubMed  CAS  Google Scholar 

  16. Weisenhorn AL, Hansma PK, Albrecht TR, Quate CF (1989) Forces in atomic force microscopy in air and water. Appl Phys Lett 54:2651–2653

    Article  Google Scholar 

  17. Tamayo J, Garcia R (1996) Deformation, contact time, and phase contrast in tapping mode scanning force microscopy. Langmuir 12:4430–4435

    Article  CAS  Google Scholar 

  18. Kiracofe D, Raman A (2010) On eigenmodes, stiffness, and sensitivity of atomic force microscope cantilevers in air versus liquids. J Appl Phys 107:033506–033515

    Article  Google Scholar 

  19. Turner RD, Kirkham J, Devine D, Thomson NH (2009) Second harmonic atomic force microscopy of living Staphylococcus aureus bacteria Appl. Phys Lett 94:043901

    Google Scholar 

  20. Stark RW (2004) Spectroscopy of higher harmonics in dynamic atomic force microscopy. Nanotechnology 15:347–351

    Article  CAS  Google Scholar 

  21. Patil S, Martinez NF, Lozano JR, Garcia R (2007) Force microscopy imaging of individual protein molecules with sub-pico Newton force sensitivity. J Mol Recogn 20:516–523

    Article  CAS  Google Scholar 

  22. Xu X, Melcher J, Basak S, Reifenberger R, Raman A (2009) Compositional contrast of biological materials in liquids using the momentary excitation of higher eigenmodes in dynamic atomic force microscopy. Phys Rev Lett 102:060801–060804

    Article  PubMed  Google Scholar 

  23. Melcher J, Carrasco C, Xu X et al (2009) Origins of phase contrast in the atomic force microscope in liquids. Proc Natl Acad Sci USA 106:13655–13660

    Article  PubMed  CAS  Google Scholar 

  24. Basak S, Raman A, Garimella SV (2006) Hydrodynamic loading of microcantilevers vibrating in viscous fluids. J Appl Phys 99:114906–114915

    Article  Google Scholar 

  25. Alessandrini A, Facci P (2005) AFM: a versatile tool in biophysics. Meas Sci Techn 16:R65–R92

    Article  CAS  Google Scholar 

  26. Gould S, Marti O, Drake B et al (1988) Molecular resolution images of amino acid crystals with the atomic force microscope. Nature 332:332–334

    Article  CAS  Google Scholar 

  27. Albrecht TR, Grutter P, Horne D, Rugar D (1991) Frequency modulation detection using high‐Q cantilevers for enhanced force microscope sensitivity. J Appl Phys 69:668–673

    Article  Google Scholar 

  28. Martin Y, Williams CC, Wickramasinghe HK (1987) Atomic force microscope-force mapping and profiling on a sub 100-Ǻ scale. J Appl Phys 61:4723–4729

    Article  CAS  Google Scholar 

  29. Santos S (2011) PhD thesis: Dynamic atomic force microscopy and its applications in biomolecular imaging. University of Leeds

    Google Scholar 

  30. Drake B, Prater CB, Weisenhorn AL et al (1989) Imaging crystals, polymers, and processes in water with the atomic force microscope. Science 243:1586

    Article  PubMed  CAS  Google Scholar 

  31. Kodera N, Yamamoto D, Ishikawa R, Ando T (2010) Video imaging of walking myosin V by high-speed atomic force microscopy. Nature 468:72–76

    Article  PubMed  CAS  Google Scholar 

  32. Gross L, Mohn F, Moll N, Liljeroth P, Meyer G (2009) The Chemical Structure of a Molecule Resolved by Atomic Force Microscopy. Science 325:1110–1114

    Article  PubMed  CAS  Google Scholar 

  33. Gan Y (2009) Atomic and subnanometer resolution in ambient conditions by atomic force microscopy. Surf Sci Rep 64:99–121

    Article  CAS  Google Scholar 

  34. Santos S, Thomson NH (2011) High resolution imaging of Immunoglobulin G (IgG) antibodies and other biomolecules using amplitude modulation atomic force microscopy in air. Humana Press, New York

    Google Scholar 

  35. Gerber C, Lang HP (2006) How the doors to the nanoworld were opened. Nat Nanotechn 1:3–5

    Article  CAS  Google Scholar 

  36. Garcia R, Magerele R, Perez R (2007) Nanoscale compositional mapping with gentle forces. Nat Mater 6:405–411

    Article  PubMed  CAS  Google Scholar 

  37. Ostendorf F, Schmitz C, Hirth S et al (2008) How flat is an air-cleaved mica surface? Nanotechnology 19:305705

    Article  PubMed  CAS  Google Scholar 

  38. Bezanilla M, Manne S, Laney DE, Lyubchenko YL, Hansma HG (1995) Adsorption of DNA to mica, silylated mica, and minerals: characterization by atomic force microscopy. Langmuir 11:655–659

    Article  CAS  Google Scholar 

  39. Hansma H, Laney D (1996) DNA binding to mica correlates with cationic radius: assay by atomic force microscopy. Biophysical J 70:1933–1939

    Article  CAS  Google Scholar 

  40. Vesenka J, Guthold M, Tang CL, Keller D, Delaine E, Bustamante C (1992) Substrate preparation for reliable imaging of DNA molecules with the scanning force microscope. Ultramicroscopy 42–44:1243–1249

    Article  PubMed  Google Scholar 

  41. Ostendorf F, Schmitz C, Hirth S et al (2009) Evidence for potassium carbonate crystallites on Air-cleaved mica surfaces. Langmuir 25:10764–10767

    Article  PubMed  CAS  Google Scholar 

  42. Santos S, Verdaguer A, Souier T, Thomson HN, Chiesa M (2011) Measuring the true height of water layers in the nanoscale. Nanotechnology 22:465705–465713

    Article  PubMed  Google Scholar 

  43. Billingsley DJ, Kirkham J, Bonass WA, Thomson NH (2010) Atomic force microscopy of DNA at high humidity: irreversible conformational switching of supercoiled molecules. Phys Chem Chem Phys 12:14727–14734

    Article  PubMed  CAS  Google Scholar 

  44. Binnig G, Rohrer H. 1984. Scanning tunneling microscopy. In Trends in Physics, Ed. J Janta, J Pantoflicek, pp. 38-46. The Hague: Eur. Phys. Soc

    Google Scholar 

  45. Garcia R, San Paulo A (1999) Attractive and repulsive tip-sample interaction regimes in tapping mode atomic force microscopy. Phys Rev B 60:4961–4967

    Article  CAS  Google Scholar 

  46. Santos S, Barcons V, Font J, Thomson NH (2010) Bi-stability of amplitude modulation AFM in air: deterministic and stochastic outcomes for imaging biomolecular systems. Nanotechnology 21:225710–225720

    Article  PubMed  Google Scholar 

  47. Santos S, Barcons V, Font J, Thomson NH (2010) Cantilever dynamics in amplitude modulation AFM: continuous and discontinuous transitions. J Phys D: Appl Phys 43:275401–275407

    Article  Google Scholar 

  48. Stark RW (2010) Bistability, higher harmonics, and chaos in AFM Materials Today (2010) 13(9):24–32

    Google Scholar 

  49. Tamayo J, Garcia R (1998) Relationship between phase shift and energy dissipation in tapping-mode scanning force microscopy. Appl Phys Lett 73:2926–2928

    Article  CAS  Google Scholar 

  50. Santos S, Barcons V, Verdaguer A et al (2011) How localised are energy dissipation processes in the nanoscale? Nanotechnology 22:345401–345407

    Article  PubMed  Google Scholar 

  51. Zitzler L, Herminghaus S, Mugele F (2002) Capillary forces in tapping mode atomic force microscopy. Phys Rev B 66:155436–155438

    Article  Google Scholar 

  52. Garcia R, San Paulo A (2000) Dynamics of a vibrating tip near or in intermittent contact with a surface. Phys Rev B 61:R13381–R13384

    Article  CAS  Google Scholar 

  53. Marth M, Maier D, Honerkamp J (1999) A unifying view on some experimental effects in tapping-mode atomic force microscopy. J Appl Phys 85:7030–7036

    Article  CAS  Google Scholar 

  54. Santos S, Barcons V, Verdaguer A, Chiesa M (2011) Sub-harmonic excitation in AM AFM in the presence of adsorbed water layers. J Appl Phys 110:114902–114911

    Article  Google Scholar 

  55. Couturier G, Boisgard R, Nony L, Aimé JP (2003) Noncontact atomic force microscopy: Stability criterion and dynamical responses of the shift of frequency and damping signal. Rev Scientific Instrum 74:2726–2734

    Article  CAS  Google Scholar 

  56. Garcia R, San PA (2000) Amplitude curves and operating regimes in dynamic atomic force microscopy. Ultramicroscopy 82:79–83

    Article  PubMed  CAS  Google Scholar 

  57. Santos S, Barcons V, Christenson HK, Font J, Thomson NH (2011) The intrinsic resolution limit in the atomic force microscope: implications for heights of nano-scale features. PLoS One 6:e23821

    Article  PubMed  CAS  Google Scholar 

  58. Moreno-Herrero F, Colchero J, Baro A (2003) DNA height in atomic force microscopy. Ultramicroscopy 96:167–174

    Article  PubMed  CAS  Google Scholar 

  59. Santos S, Thomson NH (2011) Energy dissipation in a dynamic nanoscale contact. Appl Phys Lett 98:013101–013103

    Article  Google Scholar 

  60. Crampton N, Bonass WA, Kirkham J, Rivetti C, Thomson NH (2006) Collision events between RNA polymerases in convergent transcription studied by atomic force microscopy. Nucleic Acids Res 34:5416–5425

    Article  PubMed  CAS  Google Scholar 

  61. Liu LF, Wang JC (1987) Supercoiling of the DNA-template during transcription. Proc Natl Acad Sci 84:7024–7027

    Article  PubMed  CAS  Google Scholar 

  62. Beaglehole D, Christenson HK (1992) Vapor adsorption on mica and silicon: entropy effects, layering, and surface forces. J Phys Chem 96:3395–3403

    Article  CAS  Google Scholar 

  63. Balmer TE, Christenson HK, Spencer ND, Heuberger M (2008) The effect of surface ions on water adsorption to mica. Langmuir 24:1566–1569

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank the group of Tony Maxwell for kindly providing the topoisomerase samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neil Thomson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Santos, S., Billingsley, D., Thomson, N. (2013). Atomic Force Microscopy Imaging of Macromolecular Complexes. In: Sousa, A., Kruhlak, M. (eds) Nanoimaging. Methods in Molecular Biology, vol 950. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-137-0_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-137-0_18

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-136-3

  • Online ISBN: 978-1-62703-137-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics