Skip to main content

Elemental Mapping by Electron Energy Loss Spectroscopy in Biology

  • Protocol
  • First Online:
Nanoimaging

Part of the book series: Methods in Molecular Biology ((MIMB,volume 950))

Abstract

Over the past decades there have been significant advances in transmission electron microscopy for biological applications, including in energy filtering and spectrum imaging, which are techniques based on the principles of electron energy loss spectroscopy. These imaging modalities allow quantitative mapping of specific chemical elements with high sensitivity and spatial resolution. This chapter describes the experimental and computational procedures for elemental mapping in two dimensions as well as a more recent extension to three dimensions, which can reveal quantitative distributions of elements in cells on a macromolecular scale.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bazett-Jones DP, Hendzel MJ, Kruhlak MJ (1999) Stoichiometric analysis of protein- and nucleic acid-based structures in the cell nucleus. Micron 30(2):151–157

    Article  PubMed  CAS  Google Scholar 

  2. Egerton RF (1996) Electron energy loss spectroscopy, 2nd edn. Plenum, New York

    Google Scholar 

  3. Krivanek OL, Friedman SL, Gubbens AJ, Kraus B (1995) An imaging filter for biological applications. Ultramicroscopy 59(1–4):267–282

    Article  PubMed  CAS  Google Scholar 

  4. Egerton RF (2003) New techniques in electron energy-loss spectroscopy and energy-filtered imaging. Micron 34(3–5):127–139

    Article  PubMed  CAS  Google Scholar 

  5. Egerton RF (1979) K-shell ionization cross-sections for use in microanalysis. Ultramicroscopy 4(2):169–179

    Article  CAS  Google Scholar 

  6. Haking A, Troester H, Richter K, Crucifix C, Spring H, Trendelenburg MF (1999) An approach to an objective background subtraction for elemental mapping with core-edges down to 50 eV: description, evaluation and application. Ultramicroscopy 80(3):163–182

    Article  PubMed  CAS  Google Scholar 

  7. Aronova MA, Kim YC, Zhang G, Leapman RD (2007) Quantification and thickness correction of EFTEM phosphorus maps. Ultramicroscopy 107(2–3):232–244

    Article  PubMed  CAS  Google Scholar 

  8. Leapman RD (1986) Scanning transmission electron microscope (STEM) elemental mapping by electron energy-loss spectroscopy. Ann N Y Acad Sci 483:326–338

    Article  PubMed  CAS  Google Scholar 

  9. Aronova MA, Kim YC, Harmon R, Sousa AA, Zhang G, Leapman RD (2007) Three-dimensional elemental mapping of phosphorus by quantitative electron spectroscopic tomography (QuEST). J Struct Biol 160(1):35–48

    Article  PubMed  CAS  Google Scholar 

  10. Kremer JR, Mastronarde DN, McIntosh JR (1996) Computer visualization of three-dimensional image data using IMOD. J Struct Biol 116(1):71–76

    Article  PubMed  CAS  Google Scholar 

  11. Harmon RT, Meyer S, Hunt JA (2005) Software for EFTEM tomography incorporated into digital micrograph/GMS. Gatan, Inc., Pleasanton

    Google Scholar 

  12. Gilbert P (1972) Iterative methods for 3-dimensional reconstruction of an object from projections. J Theor Biol 36(1):105–117

    Article  PubMed  CAS  Google Scholar 

  13. Bazett-Jones DP, Hendzel MJ (1999) Electron spectroscopic imaging of chromatin. Methods 17(2):188–200

    Article  PubMed  CAS  Google Scholar 

  14. Schalch T, Duda S, Sargent DF, Richmond TJ (2005) X-ray structure of a tetranucleosome and its implications for the chromatin fibre. Nature 436(7047):138–141

    Article  PubMed  CAS  Google Scholar 

  15. Aronova MA, Sousa AA, Zhang G, Leapman RD (2010) Limitations of beam damage in electron spectroscopic tomography of embedded cells. J Microsc 239(3):223–232

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard D. Leapman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Aronova, M.A., Leapman, R.D. (2013). Elemental Mapping by Electron Energy Loss Spectroscopy in Biology. In: Sousa, A., Kruhlak, M. (eds) Nanoimaging. Methods in Molecular Biology, vol 950. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-137-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-137-0_13

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-136-3

  • Online ISBN: 978-1-62703-137-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics