Skip to main content

Introduction to Glass Microstructuring Techniques

  • Protocol
  • First Online:
Book cover Microfluidic Diagnostics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 949))

Abstract

In this chapter an overview of manufacturing methods, leading to the fabrication of microstructures in glass substrates, is presented. Glass is a material of excellent optical properties, a very good electric insulator, biocompatible and chemically stable. In addition to its intrinsic qualities, glass can be processed with the use of manufacturing methods originating from the microelectronic industry. In this text two complete manufacturing protocols are described, each composed of standard microfabrication steps; namely, the deposition of masking layers, photolithographic patterning and pattern transfer via wet or dry etching. As a result, a set of building blocks is provided, allowing the manufacture of various microfluidic components that are frequently used in the domain of micro-total analysis system technology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Terry SC, Jerman JH, Angell JB (1979) A gas chromatographic air analyzer fabricated on a silicon wafer. IEEE Trans Electron Dev 26:1880–1886

    Article  Google Scholar 

  2. Oosterbroek RE, Berg van de A (2003) Lab-on-a-chip: miniaturized systems for (bio)chemical analysis and synthesis. Elsevier B.V., Amsterdam

    Google Scholar 

  3. Geschke O, Klank H, Tellemann P (2008) Microsystem engineering of lab-on-a-chip devices, 2nd edn. Wiley-VCH, Verlag GmbH & Co. KGaA, Weinheim

    Google Scholar 

  4. Huikko K, Kostiainen R, Kotiaho T (2003) Introduction to micro-analytical systems: bioanalytical and pharmaceutical applications. Eur J Pharm Sci 20:149–171

    Article  CAS  Google Scholar 

  5. Erickson D, Li D (2004) Integrated microfluidic devices. Anal Chim Acta 507:11–26

    Article  CAS  Google Scholar 

  6. Weigl BH, Bardell RL, Cabrera CR (2003) Lab-on-a-chip for drug development. Adv Drug Deliv Rev 55:349–377

    Article  CAS  Google Scholar 

  7. Bruin GJM (2000) Recent developments in electrokinetically driven analysis on microfabricated devices. Electrophoresis 21:3931–3951

    Article  CAS  Google Scholar 

  8. Lee SJ, Lee SY (2004) Micro total analysis system (μ-TAS) in biotechnology. Appl Microbiol Biotechnol 64:289–299

    Article  Google Scholar 

  9. Vilkner T, Janasek D, Manz A (2004) Micro total analysis systems. Recent developments. Anal Chem 76:3373–3385

    Article  CAS  Google Scholar 

  10. Nguyet TT, Ayed I, Pallandre A, Taverna M (2010) Recent innovations in protein separation on microchips by electrophoretic methods: an update. Electrophoresis 31:147–173

    Article  Google Scholar 

  11. Franssila S (2004) Introduction to microfabrication. Wiley, Chichester

    Google Scholar 

  12. Stjernström M, Roeraade J (1998) Method for fabrication of microfluidic systems in glass. J Micromech Microeng 8:33–38

    Article  Google Scholar 

  13. Ronggui S, Righini GC (1991) Characterization of reactive ion etching of glass and its applications in integrated optics. J Vac Sci Technol A 95:2709–2712

    Article  Google Scholar 

  14. Li X, Abe T, Esashi M (2001) Deep reactive ion etching of Pyrex glass using SF6 plasma. Sens Actuators A 87:139–145

    Article  Google Scholar 

  15. Metwalli EE, Pantano CG (2003) Reactive ion etching of glasses: composition dependence. Nucl Instrum Methods Phys Res B 207:21–27

    Article  CAS  Google Scholar 

  16. Leech PW (1999) Reactive ion etching of quartz and silica-based glasses in CF4/CHF3 plasmas. Vacuum 55:191–196

    Article  CAS  Google Scholar 

  17. Simpson PC, Woolley AT, Mathies RA (1998) Microfabrication technology for the production of capillary array electrophoresis chips. Biomed Microdevices 1:7–26

    Article  CAS  Google Scholar 

  18. Holden MA, Kumar S, Castellana ET, Beskok A, Cremer PS (2003) Generating fixed concentration arrays in a microfluidic device. Sens Actuators B 92:199–207

    Article  Google Scholar 

  19. Grosse A, Grewe M, Fouckhardt H (2001) Deep wet etching of fused silica glass for hollow capillary optical leaky waveguides in microfluidic devices. J Micromech Microeng 11:257–262

    Article  CAS  Google Scholar 

  20. Corman T, Enoksson P, Stemme G (1998) Deep wet etching of borosilicate glass using an anodically bonded silicon substrate as mask. J Micromech Microeng 8:84–87

    Article  CAS  Google Scholar 

  21. Iliescu C, Miao J, Tay FEH (2005) Stress control in masking layers for deep wet micromachining of Pyrex glass. Sens Actuators A 117:286–292

    Article  Google Scholar 

  22. Mourzina Y, Steffen A, Offenhäusser A (2005) The evaporated metal masks for chemical glass etching for BioMEMS. Microsyst Technol 11:135–140

    CAS  Google Scholar 

  23. Iliescu C, Jing J, Tay FEH, Miao J, Sun T (2005) Characterization of masking layers for deep wet etching of glass in an improved HF/HCl solution. Surf CoatTechnol 198:314–318

    Article  CAS  Google Scholar 

  24. Daykin RNC, Haswell SJ (1995) Development of a micro flow injection manifold for the determination of orthophosphate. Anal Chim Acta 313:155–159

    Article  CAS  Google Scholar 

  25. Iliescu C, Chen B, Miao J (2008) On the wet etching of Pyrex glass. Sens Actuators A 143:154–161

    Article  Google Scholar 

  26. Ceriotti L, Weible K, Rooij de NF, Verpoorte E (2003) Rectangular channels for lab-on-a-chip applications. Microelectron Eng 67–68:865–871

    Article  Google Scholar 

  27. Rodriguez I, Spicar-Mihalic P, Kuyper CL, Fiorini GS, Chiu DT (2003) Rapid prototyping of glass microchannels. Anal Chim Acta 496:205–215

    Article  CAS  Google Scholar 

  28. Park JH, Lee NE, Lee J, Park JS, Park HD (2005) Deep dry etching of borosilicate glass using SF6 and SF6/Ar inductively coupled plasmas. Microelectron Eng 82:119–128

    Article  CAS  Google Scholar 

  29. Kolari K (2008) Deep plasma etching of glass with a silicon shadow mask. Sens Actuators A 141:677–684

    Article  Google Scholar 

  30. Thiénot E, Domingo F, Cambril E, Gosse C (2006) Reactive ion etching of glass for biochip applications: composition effects and surface damages. Microelectron Eng 83:1155–1158

    Article  Google Scholar 

  31. Queste S, Salut R, Clatot S, Rauch J-Y, Khan Malek GC (2010) Manufacture of microfluidic glass chips by deep plasma etching, femtosecond laser ablation, and anodic bonding. Microsyst Technol 16:1485–1493

    Article  CAS  Google Scholar 

  32. Mazurczyk R, Vieillard J, Bouchard A, Hannes B, Krawczyk S (2006) A novel concept of the integrated fluorescence detection system and its application in a lab-on-a-chip microdevice. Sens Actuators B 118:11–19

    Article  Google Scholar 

  33. Bou Chakra E, Hannes B, Vieillard J, Mansfield CD, Mazurczyk R, Bouchard A, Potempa J, Krawczyk S, Cabrera M (2009) Grafting of antibodies inside integrated microfluidic–microoptic devices by means of automated microcontact printing. Sens Actuators B 140:278–286

    Article  Google Scholar 

  34. Vieillard J, Mazurczyk R, Morin C, Hannes B, Chevolot Y, Desbène P-L, Krawczyk S (2007) Application of microfluidic chip with integrated optics for electrophoretic separations of proteins. J Chromatogr B 845:218–225

    Article  CAS  Google Scholar 

  35. Vieillard J, Mazurczyk R, Boum L-L, Bouchard A, Chevolot Y, Cremillieu P, Hannes B, Krawczyk S (2008) Integrated microfluidic–microoptical systems fabricated by dry etching of soda-lime glass. Microelectron Eng 85:465–469

    Article  CAS  Google Scholar 

  36. Mazurczyk R, El-Khoury G, Dugas V, Hannes B, Laurenceau E, Cabrera M, Souteyrand S, Krawczyka E, Cloarec J-P, Chevolot Y (2008) Low-cost, fast prototyping method of fabrication of the microreactor devices in soda-lime glass. Sens Actuators B 128:552–559

    Article  Google Scholar 

  37. Hannes B, Vieillard J, Bou Chakra E, Mazurczyk R, Mansfield CD, Potempa J, Krawczyk S, Cabrera M (2008) The etching of glass patterned by microcontact printing with application to microfluidics and electrophoresis. Sens Actuators B 129:255–262

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by the NANOLYON technological platform of the Institut des Nanotechnologies de Lyon (INL), which provided us with access to its technological facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Radoslaw Mazurczyk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media,LLC

About this protocol

Cite this protocol

Mazurczyk, R., Mansfield, C.D. (2013). Introduction to Glass Microstructuring Techniques. In: Jenkins, G., Mansfield, C. (eds) Microfluidic Diagnostics. Methods in Molecular Biology, vol 949. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-134-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-134-9_9

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-133-2

  • Online ISBN: 978-1-62703-134-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics