Skip to main content

An ELISA Lab-on-a-Chip (ELISA-LOC)

  • Protocol
  • First Online:
Microfluidic Diagnostics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 949))

Abstract

Laminated object manufacturing (LOM) technology using polymer sheets is an easy and affordable method for rapid prototyping of Lab-on-a-Chip (LOC) systems. It has recently been used to fabricate a miniature 96 sample ELISA lab-on-a-chip (ELISA-LOC) by integrating the washing step directly into an ELISA plate. LOM has been shown to be capable of creating complex 3D microfluidics through the assembly of a stack of polymer sheets with features generated by laser micromachining and by bonding the sheets together with adhesive. A six layer ELISA-LOC was fabricated with an acrylic (poly(methyl methacrylate) (PMMA)) core and five polycarbonate layers micromachined by a CO2 laser with simple microfluidic features including a miniature 96-well sample plate. Immunological assays can be carried out in several configurations (1 × 96 wells, 2 × 48 wells, or 4 × 24 wells). The system includes three main functional elements: (1) a reagent loading fluidics module, (2) an assay and detection wells plate, and (3) a reagent removal fluidics module. The ELISA-LOC system combines several biosensing elements: (1) carbon nanotube (CNT) technology to enhance primary antibody immobilization, (2) sensitive ECL (electrochemiluminescence) detection, and (3) a charge-coupled device (CCD) detector for measuring the light signal generated by ECL. Using a sandwich ELISA assay, the system detected Staphylococcal enterotoxin B (SEB) at concentrations as low as 0.1 ng/ml, a detection level similar to that reported for conventional ELISA. ELISA-LOC can be operated by a syringe and does not require power for operation. This simple point-of-care (POC) system is useful for carrying out various immunological assays and other complex medical assays without the laboratory required for conventional ELISA, and therefore may be more useful for global healthcare delivery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Engvall E, Perlmann P (1971) Enzyme-linked immunosorbent assay (ELISA). Quantitative assay of immunoglobulin G. Immunochemistry 8:871–874

    Article  CAS  Google Scholar 

  2. Van Weemen BK, Schuurs AH (1971) Immunoassay using antigen-enzyme conjugates. FEBS Lett 15:232–236

    Article  Google Scholar 

  3. Ihara M, Yoshikawa A, Wu Y, Takahashi H, Mawatari K, Shimura K, Sato K, Kitamori T, Ueda H (2010) Micro OS-ELISA: rapid noncompetitive detection of a small biomarker peptide by open-sandwich enzyme-linked immunosorbent assay (OS-ELISA) integrated into microfluidic device. Lab Chip 10:92–100

    Article  CAS  Google Scholar 

  4. Gao Y, Sherman PM, Sun Y, Li D (2008) Multiplexed high-throughput electrokinetically-controlled immunoassay for the detection of specific bacterial antibodies in human serum. Anal Chim Acta 606:98–107

    Article  CAS  Google Scholar 

  5. Kong J, Jiang L, Su X, Qin J, Du Y, Lin B (2009) Integrated microfluidic immunoassay for the rapid determination of clenbuterol. Lab Chip 9:1541–1547

    Article  CAS  Google Scholar 

  6. Tseng YT, Yang CS, Tseng FG (2009) A perfusion-based micro opto-fluidic system (PMOFS) for continuously in-situ immune sensing. Lab Chip 9:2673–2682

    Article  CAS  Google Scholar 

  7. Lee BS, Lee JN, Park JM, Lee JG, Kim S, Cho YK, Ko C (2009) A fully automated immunoassay from whole blood on a disc. Lab Chip 9:1548–1555

    Article  CAS  Google Scholar 

  8. Javanmard M, Talasaz AH, Nemat-Gorgani M, Pease F, Ronaghi M, Davis RW (2009) Electrical detection of protein biomarkers using bioactivated microfluidic channels. Lab Chip 9:1429–1434

    Article  CAS  Google Scholar 

  9. Tachi T, Kaji N, Tokeshi M, Baba Y (2009) Microchip-based homogeneous immunoassay using fluorescence polarization spectroscopy. Lab Chip 9:966–971

    Article  CAS  Google Scholar 

  10. Liu C, Qiu X, Ongagna S, Chen D, Chen Z, Abrams WR, Malamud D, Corstjens PL, Bau HH (2009) A timer-actuated immunoassay cassette for detecting molecular markers in oral fluids. Lab Chip 9:768–776

    Article  CAS  Google Scholar 

  11. Meagher RJ, Hatch AV, Renzi RF, Singh AK (2008) An integrated microfluidic platform for sensitive and rapid detection of biological toxins. Lab Chip 8:2046–2053

    Article  CAS  Google Scholar 

  12. Reichmuth DS, Wang SK, Barrett LM, Throckmorton DJ, Einfeld W, Singh AK (2008) Rapid microchip-based electrophoretic immunoassays for the detection of swine influenza virus. Lab Chip 8:1319–1324

    Article  CAS  Google Scholar 

  13. Luo Y, Yu F, Zare RN (2008) Microfluidic device for immunoassays based on surface plasmon resonance imaging. Lab Chip 8:694–700

    Article  CAS  Google Scholar 

  14. Choi Y, Kang T, Lee LP (2009) Plasmon resonance energy transfer (PRET)-based molecular imaging of cytochrome c in living cells. Nano Lett 9:85–90

    Article  CAS  Google Scholar 

  15. Lucas LJ, Chesler JN, Yoon JY (2007) Lab-on-a-chip immunoassay for multiple antibodies using microsphere light scattering and quantum dot emission. Biosens Bioelectron 23:675–681

    Article  CAS  Google Scholar 

  16. Stevens DY, Petri CR, Osborn JL, Spicar-Mihalic P, McKenzie KG, Yager P (2008) Enabling a microfluidic immunoassay for the developing world by integration of on-card dry reagent storage. Lab Chip 8:2038–2045

    Article  CAS  Google Scholar 

  17. Tang D, Tang J, Su B, Ren J, Chen G (2009) Simultaneous determination of five-type hepatitis virus antigens in 5 min using an integrated automatic electrochemical immunosensor array. Biosens Bioelectron 25(7):1658–1662

    Article  Google Scholar 

  18. Mujika M, Arana S, Castano E, Tijero M, Vilares R, Ruano-Lopez JM, Cruz A, Sainz L, Berganza J (2009) Magnetoresistive immunosensor for the detection of Escherichia coli O157:H7 including a microfluidic network. Biosens Bioelectron 24:1253–1258

    Article  CAS  Google Scholar 

  19. Lee SM, Hwang KS, Yoon HJ, Yoon DS, Kim SK, Lee YS, Kim TS (2009) Sensitivity enhancement of a dynamic mode microcantilever by stress inducer and mass inducer to detect PSA at low picogram levels. Lab Chip 9:2683–2690

    Article  CAS  Google Scholar 

  20. Sapsford KE, Francis J, Sun S, Kostov Y, Rasooly A (2009) Miniaturized 96-well ELISA chips for staphylococcal enterotoxin B detection using portable colorimetric detector. Anal Bioanal Chem 394:499–505

    Article  CAS  Google Scholar 

  21. Yang M, Kostov Y, Bruck HA, Rasooly A (2008) Carbon nanotubes with enhanced chemiluminescence immunoassay for CCD-based detection of Staphylococcal enterotoxin B in food. Anal Chem 80:8532–8537

    Article  CAS  Google Scholar 

  22. Sapsford KE, Sun S, Francis J, Sharma S, Kostov Y, Rasooly A (2008) A fluorescence detection platform using spatial electroluminescent excitation for measuring botulinum neurotoxin A activity. Biosens Bioelectron 24:618–625

    Article  CAS  Google Scholar 

  23. Yang M, Kostov Y, Bruck HA, Rasooly A (2009) Gold nanoparticle-based enhanced chemiluminescence immunosensor for detection of Staphylococcal Enterotoxin B (SEB) in food. Int J Food Microbiol 133:265–271

    Article  CAS  Google Scholar 

  24. Sun S, Ossandon M, Kostov Y, Rasooly A (2009) Lab-on-a-chip for botulinum neurotoxin a (BoNT-A) activity analysis. Lab Chip 9:3275–3281

    Article  CAS  Google Scholar 

  25. Sun S, Yang M, Kostov Y, Rasooly A (2010) ELISA-LOC: lab-on-a-chip for enzyme-linked immunodetection. Lab Chip 10:2093–2100

    Article  CAS  Google Scholar 

  26. Xia Y, Kim E, Zhao XM, Rogers JA, Prentiss M, Whitesides GM (1996) Complex optical surfaces formed by replica molding against elastomeric masters. Science 273:347–349

    Article  CAS  Google Scholar 

  27. Delamarche E, Bernard A, Schmid H, Michel B, Biebuyck H (1997) Patterned delivery of immunoglobulins to surfaces using microfluidic networks. Science 276:779–781

    Article  CAS  Google Scholar 

  28. Irawan R, Tjin SC, Yager P, Zhang D (2005) Cross-talk problem on a fluorescence multi-channel microfluidic chip system. Biomed Microdevices 7:205–211

    Article  Google Scholar 

  29. Schilling EA, Kamholz AE, Yager P (2002) Cell lysis and protein extraction in a microfluidic device with detection by a fluorogenic enzyme assay. Anal Chem 74:1798–1804

    Article  CAS  Google Scholar 

  30. Munson MS, Hasenbank MS, Fu E, Yager P (2004) Suppression of non-specific adsorption using sheath flow. Lab Chip 4:438–445

    Article  CAS  Google Scholar 

  31. Rossier JS, Schwarz A, Reymond F, Ferrigno R, Bianchi F, Girault HH (1999) Microchannel networks for electrophoretic separations. Electrophoresis 20:727–731

    Article  CAS  Google Scholar 

  32. Rossier J, Reymond F, Michel PE (2002) Polymer microfluidic chips for electrochemical and biochemical analyses. Electrophoresis 23:858–867

    Article  CAS  Google Scholar 

  33. Taitt CR, Anderson GP, Ligler FS (2005) Evanescent wave fluorescence biosensors. Biosens Bioelectron 20:2470–2487

    Article  CAS  Google Scholar 

  34. Ngundi MM, Qadri SA, Wallace EV, Moore MH, Lassman ME, Shriver-Lake LC, Ligler FS, Taitt CR (2006) Detection of deoxynivalenol in foods and indoor air using an array biosensor. Environ Sci Technol 40:2352–2356

    Article  CAS  Google Scholar 

  35. Moreno-Bondi MC, Taitt CR, Shriver-Lake LC, Ligler FS (2006) Multiplexed measurement of serum antibodies using an array biosensor. Biosens Bioelectron 21:1880–1886

    Article  CAS  Google Scholar 

  36. Ligler FS, Sapsford KE, Golden JP, Shriver-Lake LC, Taitt CR, Dyer MA, Barone S, Myatt CJ (2007) The array biosensor: portable, automated systems. Anal Sci 23:5–10

    Article  Google Scholar 

  37. Yang M, Kostov Y, Rasooly A (2008) Carbon nanotubes based optical immunodetection of Staphylococcal Enterotoxin B (SEB) in food. Int J Food Microbiol 127:78–83

    Article  CAS  Google Scholar 

  38. Hu D, Han H, Zhou R, Dong F, Bei W, Jia F, Chen H (2008) Gold(III) enhanced chemiluminescence immunoassay for detection of antibody against ApxIV of Actinobacillus pleuropneumoniae. Analyst 133:768–773

    Article  CAS  Google Scholar 

  39. Rubtsova M, Kovba GV, Egorov AM (1998) Chemiluminescent biosensors based on porous supports with immobilized peroxidase. Biosens Bioelectron 13:75–85

    Article  CAS  Google Scholar 

  40. Archer DL, Young FE (1988) Contemporary issues: diseases with a food vector. Clin Microbiol Rev 1:377–398

    CAS  Google Scholar 

  41. Olsen SJ, MacKinnon LC, Goulding JS, Bean NH, Slutsker L (2000) Surveillance for foodborne-disease outbreaks—United States, 1993–1997. MMWR CDC Surveill Summ 49:1–62

    CAS  Google Scholar 

  42. Bean NH, Goulding JS, Lao C, Angulo FJ (1996) Surveillance for foodborne-disease outbreaks—United States, 1988–1992. MMWR CDC Surveill Summ 45:1–66

    CAS  Google Scholar 

  43. Bunning VK, Lindsay JA, Archer DL (1997) Chronic health effects of microbial foodborne disease. World Health Stat Q 50:51–56

    CAS  Google Scholar 

  44. Garthright WE, Archer DL, Kvenberg JE (1988) Estimates of incidence and costs of intestinal infectious diseases in the United States. Public Health Rep 103:107–115

    CAS  Google Scholar 

  45. Asao T, Kumeda Y, Kawai T, Shibata T, Oda H, Haruki K, Nakazawa H, Kozaki S (2003) An extensive outbreak of staphylococcal food poisoning due to low-fat milk in Japan: estimation of enterotoxin A in the incriminated milk and powdered skim milk. Epidemiol Infect 130:33–40

    Article  CAS  Google Scholar 

  46. Breuer K, Wittmann M, Bosche B, Kapp A, Werfel T (2000) Severe atopic dermatitis is associated with sensitization to staphylococcal enterotoxin B (SEB). Allergy 55:551–555

    Article  CAS  Google Scholar 

  47. Bunikowski R, Mielke M, Skarabis H, Herz U, Bergmann RL, Wahn U, Renz H (1999) Prevalence and role of serum IgE antibodies to the Staphylococcus aureus-derived superantigens SEA and SEB in children with atopic dermatitis. J Allergy Clin Immunol 103:119–124

    Article  CAS  Google Scholar 

  48. Mempel M, Lina G, Hojka M, Schnopp C, Seidl HP, Schafer T, Ring J, Vandenesch F, Abeck D (2003) High prevalence of superantigens associated with the egc locus in Staphylococcus aureus isolates from patients with atopic eczema. Eur J Clin Microbiol Infect Dis 22:306–309

    CAS  Google Scholar 

  49. Howell MD, Diveley JP, Lundeen KA, Esty A, Winters ST, Carlo DJ, Brostoff SW (1991) Limited T-cell receptor beta-chain heterogeneity among interleukin 2 receptor-positive synovial T cells suggests a role for superantigen in rheumatoid arthritis. Proc Natl Acad Sci U S A 88:10921–10925

    Article  CAS  Google Scholar 

  50. Uematsu Y, Wege H, Straus A, Ott M, Bannwarth W, Lanchbury J, Panayi G, Steinmetz M (1991) The T-cell-receptor repertoire in the synovial fluid of a patient with rheumatoid arthritis is polyclonal. Proc Natl Acad Sci U S A 88:8534–8538

    Article  CAS  Google Scholar 

  51. Herz U, Bunikowski R, Mielke M, Renz H (1999) Contribution of bacterial superantigens to atopic dermatitis. Int Arch Allergy Immunol 118:240–241

    Article  CAS  Google Scholar 

  52. Wiener SL (1996) Strategies for the prevention of a successful biological warfare aerosol attack. Mil Med 161:251–256

    CAS  Google Scholar 

  53. Ler SG, Lee FK, Gopalakrishnakone P (2006) Trends in detection of warfare agents. Detection methods for ricin, staphylococcal enterotoxin B and T-2 toxin. J Chromatogr A 1133:1–12

    Article  CAS  Google Scholar 

  54. Henghold WB II (2004) Other biologic toxin bioweapons: ricin, staphylococcal enterotoxin B, and trichothecene mycotoxins. Dermatol Clin 22:257–262, v

    Article  CAS  Google Scholar 

  55. Rosenbloom M, Leikin JB, Vogel SN, Chaudry ZA (2002) Biological and chemical agents: a brief synopsis. Am J Ther 9:5–14

    Article  Google Scholar 

  56. Sergeev N, Volokhov D, Chizhikov V, Rasooly A (2004) Simultaneous analysis of multiple staphylococcal enterotoxin genes by an oligonucleotide microarray assay. J Clin Microbiol 42:2134–2143

    Article  CAS  Google Scholar 

  57. Jarraud S, Peyrat MA, Lim A, Tristan A, Bes M, Mougel C, Etienne J, Vandenesch F, Bonneville M, Lina G (2001) egc, a highly prevalent operon of enterotoxin gene, forms a putative nursery of superantigens in Staphylococcus aureus. J Immunol 166:669–677

    CAS  Google Scholar 

  58. Jarraud S, Mougel C, Thioulouse J, Lina G, Meugnier H, Forey F, Nesme X, Etienne J, Vandenesch F (2002) Relationships between Staphylococcus aureus genetic background, virulence factors, agr groups (alleles), and human disease. Infect Immun 70:631–641

    Article  CAS  Google Scholar 

  59. Omoe K, Ishikawa M, Shimoda Y, Hu DL, Ueda S, Shinagawa K (2002) Detection of seg, seh, and sei genes in Staphylococcus aureus isolates and determination of the enterotoxin productivities of S. aureus isolates Harboring seg, seh, or sei genes. J Clin Microbiol 40:857–862

    Article  CAS  Google Scholar 

  60. Liu G, Lin Y (2006) Biosensor based on self-assembling acetylcholinesterase on carbon nanotubes for flow injection/amperometric detection of organophosphate pesticides and nerve agents. Anal Chem 78:835–843

    Article  CAS  Google Scholar 

  61. Bennett RW (2005) Staphylococcal enterotoxin and its rapid identification in foods by enzyme-linked immunosorbent assay-based methodology. J Food Prot 68:1264–1270

    CAS  Google Scholar 

  62. Miyamoto T, Kamikado H, Kobayashi H, Honjoh K, Iio M (2003) Immunomagnetic flow cytometric detection of staphylococcal enterotoxin B in raw and dry milk. J Food Prot 66:1222–1226

    CAS  Google Scholar 

  63. Pan TM, Yu YL, Chiu SI, Lin SS (1996) [Comparison of immunoassay kits for detection of staphylococcal enterotoxins produced by Staphylococcus aureus]. Zhonghua Minguo wei sheng wu ji mian yi xue za zhi (Chinese journal of microbiology and immunology) 29:100–107

    CAS  Google Scholar 

  64. Park CE, Akhtar M, Rayman MK (1994) Evaluation of a commercial enzyme immunoassay kit (RIDASCREEN) for detection of staphylococcal enterotoxins A, B, C, D, and E in foods. Appl Environ Microbiol 60:677–681

    CAS  Google Scholar 

  65. Park CE, Warburton D, Laffey PJ (1996) A collaborative study on the detection of staphylococcal enterotoxins in foods by an enzyme immunoassay kit (RIDASCREEN). Int J Food Microbiol 29:281–295

    Article  CAS  Google Scholar 

  66. Vernozy-Rozand C, Mazuy-Cruchaudet C, Bavai C, Richard Y (2004) Comparison of three immunological methods for detecting staphylococcal enterotoxins from food. Lett Appl Microbiol 39:490–494

    Article  CAS  Google Scholar 

  67. Wieneke AA (1991) Comparison of four kits for the detection of staphylococcal enterotoxin in foods from outbreaks of food poisoning. Int J Food Microbiol 14:305–312

    Article  CAS  Google Scholar 

  68. Hawkins KR, Yager P (2003) Nonlinear decrease of background fluorescence in polymer thin-films—a survey of materials and how they can complicate fluorescence detection in microTAS. Lab Chip 3:248–252

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Avraham Rasooly .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media,LLC

About this protocol

Cite this protocol

Rasooly, A., Bruck, H.A., Kostov, Y. (2013). An ELISA Lab-on-a-Chip (ELISA-LOC). In: Jenkins, G., Mansfield, C. (eds) Microfluidic Diagnostics. Methods in Molecular Biology, vol 949. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-134-9_29

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-134-9_29

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-133-2

  • Online ISBN: 978-1-62703-134-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics