Skip to main content

Multilayer Microfluidic Poly(Ethylene Glycol) Diacrylate Hydrogels

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 949))

Abstract

Development of robust, in vivo like tissues in vitro holds the potential to create regenerative medicine-based therapeutics, provide more physiologically significant preclinical models and supply a pharmacological and toxicological screening platform that reflects in vivo systems in both complexity and function. This protocol describes a simple, robust, multilayer replica molding technique in which poly(dimethylsiloxane) (PDMS) and poly(ethylene glycol) diacrylate (PEGDA) are serially replica molded to develop microfluidic PEGDA hydrogel networks embedded within independently fabricated PDMS housings, using a combination of soft and photo-lithography. This work has direct applications toward the development of robust, complex, cell-laden hydrogels for in vitro diagnostics and regenerative medicine applications.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Whitesides GM, Ostuni E, Takayama S, Jiang X, Ingber DE (2001) Soft lithography in biology and biochemistry. Annu Rev Biomed Eng 3:335–373

    Article  CAS  Google Scholar 

  2. Weibel DB, Diluzio WR, Whitesides GM (2007) Microfabrication meets microbiology., Nature reviews. Microbiology 5:209–218

    CAS  Google Scholar 

  3. Khademhosseini A, Langer R, Borenstein J, Vacanti JP (2006) Microscale technologies for tissue engineering and biology. Proc Natl Acad Sci USA 103:2480–2487

    Article  CAS  Google Scholar 

  4. Gómez-Sjöberg R, Leyrat AA, Pirone DM, Chen CS, Quake SR (2007) Versatile, fully automated, microfluidic cell culture system. Anal Chem 79:8557–8563

    Article  Google Scholar 

  5. Maerkl SJ, Quake SR (2007) A systems approach to measuring the binding energy landscapes of transcription factors. Science (New York, NY) 315:233–237

    Article  CAS  Google Scholar 

  6. Chen CS (1997) Geometric Control of Cell Life and Death. Science 276:1425–1428

    Article  CAS  Google Scholar 

  7. Quist AP, Pavlovic E, Oscarsson S (2005) Recent advances in microcontact printing. Anal Bioanal Chem 381:591–600

    Article  CAS  Google Scholar 

  8. Hoganson DM, Anderson JL, Weinberg EF, Swart EJ, Orrick BK, Borenstein JT, Vacanti JP (2010) Branched vascular network architecture: a new approach to lung assist device technology. J Thorac Cardiovasc Surg 140:990–995

    Article  Google Scholar 

  9. Carraro A, Hsu W-M, Kulig KM, Cheung WS, Miller ML, Weinberg EJ, Swart EF, Kaazempur-Mofrad M, Borenstein JT, Vacanti JP, Neville C (2008) In vitro analysis of a hepatic device with intrinsic microvascular-based channels. Biomed Microdevices 10:795–805

    Article  Google Scholar 

  10. Ling Y, Rubin J, Deng Y, Huang C, Demirci U, Karp JM, Khademhosseini A (2007) A cell-laden microfluidic hydrogel. Lab Chip 7:756–762

    Article  CAS  Google Scholar 

  11. Golden AP, Tien J (2007) Fabrication of microfluidic hydrogels using molded gelatin as a sacrificial element. Lab Chip 7:720–725

    Article  CAS  Google Scholar 

  12. Choi NW, Cabodi M, Held B, Gleghorn JP, Bonassar LJ, Stroock AD (2007) Microfluidic scaffolds for tissue engineering. Nat Mater 6:908–915

    Article  CAS  Google Scholar 

  13. Tsang VL, Chen AA, Cho LM, Jadin KD, Sah RL, DeLong S, West JL, Bhatia SN (2007) Fabrication of 3D hepatic tissues by additive photopatterning of cellular hydrogels. FASEB J 21:790–801

    Article  CAS  Google Scholar 

  14. Chin VI, Taupin P, Sanga S, Scheel J, Gage FH, Bhatia SN (2004) Microfabricated platform for studying stem cell fates. Biotechnol Bioeng 88:399–415

    Article  CAS  Google Scholar 

  15. Albrecht DR, Tsang VL, Sah RL, Bhatia SN (2005) Photo- and electropatterning of hydrogel-encapsulated living cell arrays. Lab Chip 5:111–118

    Article  CAS  Google Scholar 

  16. Cuchiara MP, Allen ACB, Chen TM, Miller JS, West JL (2010) Multilayer microfluidic PEGDA hydrogels. Biomaterials 31:5491–5497, Elsevier Ltd

    Article  CAS  Google Scholar 

  17. King KR, Wang CCJ, Kaazempur-Mofrad MR, Vacanti JP, Borenstein JT (2004) Biodegradable Microfluidics. Adv Mater 16:2007–2012

    Article  CAS  Google Scholar 

  18. Nguyen KT, West JL (2002) Photopolymerizable hydrogels for tissue engineering applications. Biomaterials 23:4307–4314

    Article  CAS  Google Scholar 

  19. Martinez AW, Phillips ST, Wiley BJ, Gupta M, Whitesides GM (2008) FLASH: a rapid method for prototyping paper-based microfluidic devices. Lab Chip 8:2146–2150

    Article  CAS  Google Scholar 

  20. Martinez AW, Phillips ST, Whitesides, GM (2008) Three-dimensional microfluidic devices fabricated in layered paper and tape 2008.

    Google Scholar 

  21. Grimes A, Breslauer DN, Long M, Pegan J, Lee LP, Khine M (2008) Shrinky-Dink microfluidics: rapid generation of deep and rounded patterns. Lab Chip 8:170–172

    Article  CAS  Google Scholar 

  22. Miller J, West J (2008) Biomimetic Hydrogels to Support and Guide Tissue Formation. In: Khademhosseini A, Borenstein J, Toner M, Takayama S (eds) Micro and Nanoengineering of the Cell Microenvironment, 1st edn. Artech House, Boston, pp 101–120

    Google Scholar 

  23. Bryant SJ, Anseth KS (2006) Photopolymerization of Hydrogel Scaffolds. In: Ma PX, Elisseeff JH (eds) Scaffolds in Tissue Engineering, 1st edn. Taylor and Francis, New York, pp 71–90

    Google Scholar 

  24. Mcdonald JC, Duffy DC, Anderson JR, Chiu DT (2000) Review General Fabrication of microfluidic systems in poly (dimethylsiloxane), Review Literature And Arts Of The Americas.

    Google Scholar 

  25. Wong AP, Perez-castillejos R, Love JC, Whitesides GM (2008) Partitioning microfluidic channels with hydrogel to construct tunable 3-D cellular microenvironments. Cell 29:1853–1861

    CAS  Google Scholar 

  26. Hu S, Ren X, Bachman M, Sims CE, Li GP, Allbritton NL (2004) Tailoring the Surface Properties of Poly (dimethylsiloxane) Microfluidic Devices. Society 20(13):5569–5574

    CAS  Google Scholar 

  27. Moraes C, Wang G, Sun Y, Simmons CA (2010) A microfabricated platform for ­high-throughput unconfined compression of micropatterned biomaterial arrays. Biomaterials 31:577–584, Elsevier Ltd

    Article  CAS  Google Scholar 

  28. Love JC, Wolfe DB, Jacobs HO, Whitesides GM (2001) Microscope Projection Photolithography for Rapid Prototyping of Masters with Micron-Scale Features for Use in Soft Lithography. Langmuir 17:6005–6012

    Article  CAS  Google Scholar 

  29. Hahn MS, Miller JS, West JL (2005) Laser Scanning Lithography for Surface Micropatterning on Hydrogels. Adv Mater 17:2939–2942

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The author would like to thank Professor Lisa Biswal and her research group, especially Gautam Kini, for technical assistance and Melissa McHale for her helpful insight proofreading and improving this chapter. This work was supported by the NIH Biotechnology Training Grant (T32 GM008362-18) and the NIH Quantum Grant (1 P20 EB007076 01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jennifer L. West .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media,LLC

About this protocol

Cite this protocol

Cuchiara, M.P., West, J.L. (2013). Multilayer Microfluidic Poly(Ethylene Glycol) Diacrylate Hydrogels. In: Jenkins, G., Mansfield, C. (eds) Microfluidic Diagnostics. Methods in Molecular Biology, vol 949. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-134-9_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-134-9_24

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-133-2

  • Online ISBN: 978-1-62703-134-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics