Skip to main content

Droplet-Based Microfluidics

  • Protocol
  • First Online:
Microfluidic Diagnostics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 949))

Abstract

Droplet-based microfluidics or digital microfluidics is a subclass of microfluidic devices, wherein droplets are generated using active or passive methods. The active method for generation of droplets involves the use of an external factor such as an electric field for droplet generation. Two techniques that fall in this category are dielectrophoresis (DEP) and electrowetting on dielectric (EWOD). In passive methods, the droplet generation depends on the geometry and dimensions of the device. T-junction and flow focusing methods are examples of passive methods used for generation of droplets. In this chapter the methods used for droplet generation, mixing of contents of droplets, and the manipulation of droplets are described in brief. A review of the applications of digital microfluidics with emphasis on the last decade is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Terry SC (1975) Gas chromatography system fabricated on silicon wafer using integrated circuit technology. Stanford Electron Lab Tech Rep 4603:1–128

    Google Scholar 

  2. Manz A et al (1992) Planar chips technology for miniaturization and integration of separation techniques into monitoring systems: capillary electrophoresis on a chip. J Chromatogr A 593:253–258

    Article  CAS  Google Scholar 

  3. Whitesides GM (2006) The origins and the future of microfluidics. Nature 442:368–373

    Article  CAS  Google Scholar 

  4. Whitesides GM et al (2001) Soft lithography in biology and biochemistry. Annu Rev Biomed Eng 3:335–373

    Article  CAS  Google Scholar 

  5. Nguyen NT, Wu Z (2005) Micromixers—a review. J Micromech Microeng 15:R1

    Article  Google Scholar 

  6. Bessoth FG, deMello AJ, Manz A (1999)Microstructure for efficient continuous ­flowmixing. Anal Commun 36:213–215

    Article  Google Scholar 

  7. Gascoyne PRC et al (2004) Dielectrophoresis-based programmable fluidic processors. Lab Chip 4:299–309

    Article  CAS  Google Scholar 

  8. Gunther A, Jensen KF (2006) Multiphase microfluidics: from flow characteristics to chemical and materials synthesis. Lab Chip 6:1487–1503

    Article  CAS  Google Scholar 

  9. Malic L et al (2010) Integration and detection of biochemical assays in digital microfluidic LOC devices. Lab Chip 10:418–431

    Article  CAS  Google Scholar 

  10. Teh SY et al (2008) Droplet microfluidics. Lab Chip 8:198–220

    Article  CAS  Google Scholar 

  11. Huebner A et al (2008) Microdroplets: a sea of applications? Lab Chip 8:1244–1254

    Article  CAS  Google Scholar 

  12. Guttenberg Z et al (2005) Planar chip device for PCR and hybridization with surface acoustic wave pump. Lab Chip 5:308–317

    Article  CAS  Google Scholar 

  13. Chen JZ et al (2005) Effect of contact angle hysteresis on thermocapillary droplet actuation. J Appl Phys 97:014906–014909

    Article  CAS  Google Scholar 

  14. Lehmann U et al (2006) Two-dimensional magnetic manipulation of microdroplets on a chip as a platform for bioanalytical applications. Sens Act B Chem 117:457–463

    Article  CAS  Google Scholar 

  15. Jones TB (2001) Liquid dielectrophoresis on the microscale. J Electrostatics 51–52:290–299

    Article  Google Scholar 

  16. Ahmed R, Jones TB (2006) Dispensing picoliter droplets on substrates using dielectrophoresis. J Electrostatics 64:543–549

    Article  Google Scholar 

  17. Jones TB et al (2001) Dielectrophoretic liquid actuation and nanodroplet formation. J Appl Phys 89:1441–1448

    Article  CAS  Google Scholar 

  18. Ahmed R, Jones TB (2007) Optimized liquid DEP droplet dispensing. J Micromech Microeng 17:1052

    Article  Google Scholar 

  19. Wang KL et al (2007) Dynamic control of DEP actuation and droplet dispensing. J Micromech Microeng 17:76

    Article  Google Scholar 

  20. Lee J et al (2002) Electrowetting and electrowetting-on-dielectric for microscale liquid handling. Sens Act A Phys 95:259–268

    Article  Google Scholar 

  21. Sung Kwon C, Hyejin M, Chang-Jin K (2003) Creating, transporting, cutting, and merging liquid droplets by electrowetting-based actuation for digital microfluidic circuits. J Microelectromech Syst 12:70–80

    Article  Google Scholar 

  22. Berthier J et al (2006) Computer aided design of an EWOD microdevice. Sens Act A Phys 127:283–294

    Article  CAS  Google Scholar 

  23. Roux J-M, Fouillet Y, Achard J-L (2007) 3D droplet displacement in microfluidic systems by electrostatic actuation. Sens Act A Phys 134:486–493

    Article  CAS  Google Scholar 

  24. Zeng J, Korsmeyer T (2004) Principles of droplet electrohydrodynamics for lab-on-a-chip. Lab Chip 4:265–277

    Article  CAS  Google Scholar 

  25. Jones TB (2002) On the relationship of dielectrophoresis and electrowetting. Langmuir 18:4437–4443

    Article  CAS  Google Scholar 

  26. Pollack MG, Shenderov AD, Fair RB (2002) Electrowetting-based actuation of droplets for integrated microfluidics. Lab Chip 2:96–101

    Article  CAS  Google Scholar 

  27. Song H, Ismagilov RF (2003) Millisecond kinetics on a microfluidic chip using nanoliters of reagents. J Am Chem Soc 125:14613–14619

    Article  CAS  Google Scholar 

  28. Thorsen T et al (2001) Dynamic pattern formation in a vesicle-generating microfluidic device. Phys Rev Lett 86:4163–4166

    Article  CAS  Google Scholar 

  29. Garstecki P et al (2004) Formation of monodisperse bubbles in a microfluidic flow-focusing device. Appl Phys Lett 85:2649–2651

    Article  CAS  Google Scholar 

  30. Chan EM, Alivisatos AP, Mathies RA (2005) High-temperature microfluidic synthesis of CdSe nanocrystals in nanoliter droplets. J Am Chem Soc 127:13854–13861

    Article  CAS  Google Scholar 

  31. Tan YC, Cristini V, Lee AP (2006) Monodispersed microfluidic droplet generation by shear focusing microfluidic device. Sens Act B Chem 114:350–356

    Article  CAS  Google Scholar 

  32. Yobas L et al (2006) High-performance flow-focusing geometry for spontaneous generation of monodispersed droplets. Lab Chip 6:1073–1079

    Article  CAS  Google Scholar 

  33. Holtze C et al (2008) Biocompatible surfactants for water-in-fluorocarbon emulsions. Lab Chip 8:1632–1639

    Article  CAS  Google Scholar 

  34. Anna SL, Bontoux N, Stone HA (2003) Formation of dispersions using “flow focusing” in microchannels. Appl Phys Lett 82:364–366

    Article  CAS  Google Scholar 

  35. Woodward A et al (2007) Monodisperse emulsions from a microfluidic device, characterised by diffusion NMR. Soft Matter 3:627–633

    Article  CAS  Google Scholar 

  36. Chun-Hong L et al (2007) A tunable microflow focusing device utilizing controllable moving walls and its applications for formation of micro-droplets in liquids. J Micromech Microeng 17:1121

    Article  CAS  Google Scholar 

  37. Garstecki P et al (2006) Formation of droplets and bubbles in a microfluidic T-junction-scaling and mechanism of break-up. Lab Chip 6:437–446

    Article  CAS  Google Scholar 

  38. Xu JH et al (2006) Formation of monodisperse microbubbles in a microfluidic device. AIchE J 52:2254–2259

    Article  CAS  Google Scholar 

  39. Gañán-Calvo AM, Gordillo JM (2001) Perfectly monodisperse microbubbling by capillary flow focusing. Phys Rev Lett 87:274501

    Article  CAS  Google Scholar 

  40. Hettiarachchi K et al (2007) On-chip generation of microbubbles as a practical technology for manufacturing contrast agents for ultrasonic imaging. Lab Chip 7:463–468

    Article  CAS  Google Scholar 

  41. Tice JD et al (2003) Formation of droplets and mixing in multiphase microfluidics at low values of the Reynolds and the capillary numbers. Langmuir 19:9127–9133

    Article  CAS  Google Scholar 

  42. Okushima S et al (2004) Controlled production of monodisperse double emulsions by two-step droplet breakup in microfluidic devices. Langmuir 20:9905–9908

    Article  CAS  Google Scholar 

  43. Nisisako T, Torii T, Higuchi T (2004) Novel microreactors for functional polymer beads. Chem Eng J 101:23–29

    Article  CAS  Google Scholar 

  44. Nisisako T (2008) Microstructured devices for preparing controlled multiple emulsions. Chem Eng Technol 31:1091–1098

    Article  CAS  Google Scholar 

  45. Song H, Tice JD, Ismagilov RF (2003) A microfluidic system for controlling reaction networks in time. Angew Chem Int Ed 42:768–772

    Article  CAS  Google Scholar 

  46. Bringer MR et al (2004) Microfluidic systems for chemical kinetics that rely on chaotic mixing in droplets. Phil Trans Roy Soc Lond Ser A Math Phys Eng Sci 362:1087–1104

    Article  CAS  Google Scholar 

  47. Song H, Chen DL, Ismagilov RF (2006) Reactions in droplets in microfluidic channels. Angew Chem Int Ed 45:7336–7356

    Article  CAS  Google Scholar 

  48. Ismagilov RF et al (2000) Experimental and theoretical scaling laws for transverse diffusive broadening in two-phase laminar flows in microchannels. Appl Phys Lett 76:2376–2378

    Article  CAS  Google Scholar 

  49. Muradoglu M, Stone HA (2005) Mixing in a drop moving through a serpentine channel: a computational study. Phys Fluids 17:073305–073309

    Article  CAS  Google Scholar 

  50. Liau A et al (2005) Mixing crowded biological solutions in milliseconds. Anal Chem 77:7618–7625

    Article  CAS  Google Scholar 

  51. Wheeler AR et al (2004) Electrowetting-on-dielectric for analysis of peptides and proteins by matrix assisted laser desorption/ionization mass spectrometry. Am Chem Soc 228:U33

    Google Scholar 

  52. Paik P et al (2003) Electrowetting-based droplet mixers for microfluidic systems. Lab Chip 3:28–33

    Article  CAS  Google Scholar 

  53. Paik P, Pamula VK, Fair RB (2003) Rapid droplet mixers for digital microfluidic systems. Lab Chip 3:253–259

    Article  CAS  Google Scholar 

  54. Link DR et al (2006) Electric control of droplets in microfluidic devices. Angew Chem Int Ed Engl 45:2556–2560

    Article  CAS  Google Scholar 

  55. Priest C, Herminghaus S, Seemann R. (2006) Generation of monodisperse gel emulsions in a microfluidic device. Appl Phys Lett 88

    Google Scholar 

  56. Ahn K et al (2006) Electrocoalescence of drops synchronized by size-dependent flow in microfluidic channels. Appl Phys Lett 88:264105

    Article  CAS  Google Scholar 

  57. Ahn K et al (2006) Dielectrophoretic manipulation of drops for high-speed microfluidic sorting devices. Appl Phys Lett 88:024104-1-024104-3

    Article  CAS  Google Scholar 

  58. Priest C, Herminghaus S, Seemann R (2006) Controlled electrocoalescence in microfluidics: targeting a single lamella. Appl Phys Lett 89:134101

    Article  CAS  Google Scholar 

  59. Wang J, Lu C (2006) Microfluidic cell fusion under continuous direct current voltage. Appl Phys Lett 89:234102–234103

    Article  CAS  Google Scholar 

  60. Singh P, Aubry N (2007) Transport and deformation of droplets in a microdevice using dielectrophoresis. Electrophoresis 28:644–657

    Article  CAS  Google Scholar 

  61. Tresset G, Takeuchi S (2005) Utilization of cell-sized lipid containers for nanostructure and macromolecule handling in microfabricated devices. Anal Chem 77:2795–2801

    Article  CAS  Google Scholar 

  62. Kohler JM et al (2004) Digital reaction technology by micro segmented flow—components, concepts and applications. Chem Eng J 101:201–216

    Article  CAS  Google Scholar 

  63. Lorenz RM et al (2006) Microfluidic and optical systems for the on-demand generation and manipulation of single femtoliter-volume aqueous droplets. Anal Chem 78:6433–6439

    Article  CAS  Google Scholar 

  64. Tan Y-C et al (2004) Design of microfluidic channel geometries for the control of droplet volume, chemical concentration, and sorting. Lab Chip 4:292–298

    Article  CAS  Google Scholar 

  65. Tan YC, Ho YL, Lee AP (2008) Microfluidic sorting of droplets by size. Microfluidics Nanofluidics 4:343–348

    Article  CAS  Google Scholar 

  66. Bremond N et al (2008) Decompressing emulsion droplets favors coalescence. Phys Rev Lett 100:024501

    Article  CAS  Google Scholar 

  67. Niu X et al (2008) Pillar-induced droplet merging in microfluidic circuits. Lab Chip 8:1837–1841

    Article  CAS  Google Scholar 

  68. Fidalgo LM, Abell C, Huck WTS (2007) Surface-induced droplet fusion in microfluidic devices. Lab Chip 7:984–986

    Article  CAS  Google Scholar 

  69. Adamson DN et al (2006) Production of arrays of chemically distinct nanolitre plugs via repeated splitting in microfluidic devices. Lab Chip 6:1178–1186

    Article  CAS  Google Scholar 

  70. Link DR et al (2004) Geometrically mediated breakup of drops in microfluidic devices. Phys Rev Lett 92:054503

    Article  CAS  Google Scholar 

  71. De Menech M (2006) Modeling of droplet breakup in a microfluidic T-shaped junction with a phase-field model. Phys Rev E 73:031505

    Article  CAS  Google Scholar 

  72. Menetrier-Deremble L, Tabeling P (2006) Droplet breakup in microfluidic junctions of arbitrary angles. Phys Rev E 74:035303

    Article  CAS  Google Scholar 

  73. Cho SK, Moon HJ, Kim CJ (2003) Creating, transporting, cutting, and merging liquid droplets by electrowetting-based actuation for digital microfluidic circuits. J Microelectromech Syst 12:70–80

    Article  Google Scholar 

  74. Ting TH et al (2006) Thermally mediated breakup of drops in microchannels. Appl Phys Lett 89:234101–234101-3

    Article  CAS  Google Scholar 

  75. Tan YC, Lee AP (2005) Microfluidic separation of satellite droplets as the basis of a monodispersed micron and submicron emulsification system. Lab Chip 5:1178–1183

    Article  CAS  Google Scholar 

  76. Choi S, Park J-K (2005) Microfluidic system for dielectrophoretic separation based on a trapezoidal electrode array. Lab Chip 5:1161–1167

    Article  CAS  Google Scholar 

  77. Li Y et al (2007) Continuous dielectrophoretic cell separation microfluidic device. Lab Chip 7:239–248

    Article  CAS  Google Scholar 

  78. Cho SK, Zhao YJ, Kim CJ (2007) Concentration and binary separation of micro particles for droplet-based digital microfluidics. Lab Chip 7:490–498

    Article  CAS  Google Scholar 

  79. Baroud CN et al (2007) Thermocapillary valve for droplet production and sorting. Phys Rev E 75:046302

    Article  CAS  Google Scholar 

  80. Clausell-Tormos J et al (2008) Droplet-based microfluidic platforms for the encapsulation and screening of mammalian cells and multicellular organisms. Chem Biol 15:427–437

    Article  CAS  Google Scholar 

  81. Zheng B, Ismagilov RF (2005) A microfluidic approach for screening submicroliter volumes against multiple reagents by using preformed arrays of nanoliter plugs in a three-phase liquid/liquid/gas flow. Angew Chem Int Ed 44:2520–2523

    Article  CAS  Google Scholar 

  82. Dittrich PS, Jahnz M, Schwille P (2005) A new embedded process for compartmentalized cell-free protein expression and on-line detection in microfluidic devices. Chembiochem 6:811–814

    Article  CAS  Google Scholar 

  83. Courtois F et al (2008) An integrated device for monitoring time-dependent in vitro expression from single genes in picolitre droplets. Chembiochem 9:439–446

    Article  CAS  Google Scholar 

  84. Chen DLL et al (2007) Using three-phase flow of immiscible liquids to prevent coalescence of droplets in microfluidic channels: criteria to identify the third liquid and validation with protein crystallization. Langmuir 23:2255–2260

    Article  CAS  Google Scholar 

  85. Li L, Boedicker JQ, Ismagilov RF (2007) Using a multijunction microfluidic device to inject substrate into an array of preformed plugs without cross-contamination: comparing theory and experiments. Anal Chem 79:2756–2761

    Article  CAS  Google Scholar 

  86. Boedicker JQ et al (2008) Detecting bacteria and determining their susceptibility to antibiotics by stochastic confinement in nanoliter droplets using plug-based microfluidics. Lab Chip 8:1265–1272

    Article  CAS  Google Scholar 

  87. Lin YQ et al (2008) Microscale LC-MS-NMR platform applied to the identification of active cyanobacterial metabolites. Anal Chem 80:8045–8054

    Article  CAS  Google Scholar 

  88. Edd JF et al (2008) Controlled encapsulation of single-cells into monodisperse picolitre drops. Lab Chip 8:1262–1264

    Article  CAS  Google Scholar 

  89. Huebner A et al (2008) Development of quantitative cell-based enzyme assays in microdroplets. Anal Chem 80:3890–3896

    Article  CAS  Google Scholar 

  90. Chabert M, Viovy J-L (2008) Microfluidic high-throughput encapsulation and hydrodynamic self-sorting of single cells. Proc Natl Acad Sci 105:3191–3196

    Article  CAS  Google Scholar 

  91. Koster S et al (2008) Drop-based microfluidic devices for encapsulation of single cells. Lab Chip 8:1110–1115

    Article  CAS  Google Scholar 

  92. Chu L-Y et al (2007) Controllable monodisperse multiple emulsions. Angew Chem Int Ed 46:8970–8974

    Article  CAS  Google Scholar 

  93. Shah RK et al (2008) Designer emulsions using microfluidics. Mater Today 11:18–27

    Article  CAS  Google Scholar 

  94. Nisisako TT, Okushima S, Torii T (2005) Controlled formulation of monodisperse double emulsions in a multiple-phase microfluidic system. Soft Matter 1:23–27

    Article  CAS  Google Scholar 

  95. Utada AS et al (2005) Monodisperse double emulsions generated from a microcapillary device. Science 308:537–541

    Article  CAS  Google Scholar 

  96. Lorenceau E et al (2005) Generation of polymerosomes from double-emulsions. Langmuir 21:9183–9186

    Article  CAS  Google Scholar 

  97. Shum HC, Kim J-W, Weitz DA (2008) Microfluidic fabrication of monodisperse biocompatible and biodegradable polymersomes with controlled permeability. J Am Chem Soc 130:9543–9549

    Article  CAS  Google Scholar 

  98. Shum HC et al (2008) Double emulsion templated monodisperse phospholipid vesicles. Langmuir 24:7651–7653

    Article  CAS  Google Scholar 

  99. Lee D, Weitz DA (2008) Double emulsion-templated nanoparticle colloidosomes with selective permeability. Adv Mater 20:3498–3503

    Article  CAS  Google Scholar 

  100. Zheng B, Roach LS, Ismagilov RF (2003) Screening of protein crystallization conditions on a microfluidic chip using nanoliter-size droplets. J Am Chem Soc 125:11170–11171

    Article  CAS  Google Scholar 

  101. Zheng B, Tice JD, Ismagilov RF (2004) Formation of droplets of alternating composition in microfluidic channels and applications to indexing of concentrations in droplet-based assays. Anal Chem 76:4977–4982

    Article  CAS  Google Scholar 

  102. Zheng B, Tice JD, Ismagilov RF (2004) Formation of arrayed droplets of soft lithography and two-phase fluid flow, and application in protein crystallization. Adv Mater 16:1365–1368

    Article  CAS  Google Scholar 

  103. Zheng B et al (2004) A droplet-based, composite PDMS/glass capillary microfluidic system for evaluating protein crystallization conditions by microbatch and vapor-diffusion methods with on-chip X-ray diffraction. Angew Chem Int Ed 43:2508–2511

    Article  CAS  Google Scholar 

  104. Chen DL, Gerdts CJ, Ismagilov RF (2005) Using microfluidics to observe the effect of mixing on nucleation of protein crystals. J Am Chem Soc 127:9672–9673

    Article  CAS  Google Scholar 

  105. Gerdts CJ et al (2006) Time-controlled microfluidic seeding in nL-volume droplets to separate nucleation and growth stages of protein crystallization. Angew Chem Int Ed 45:8156–8160

    Article  CAS  Google Scholar 

  106. Yadav MK et al (2005) In situ data collection and structure refinement from microcapillary protein crystallization. J Appl Crystallogr 38:900–905

    Article  CAS  Google Scholar 

  107. Li L et al (2006) Nanoliter microfluidic hybrid method for simultaneous screening and optimization validated with crystallization of membrane proteins. P Natl Acad Sci U S A 103:19243–19248

    Article  CAS  Google Scholar 

  108. Shestopalov I, Tice JD, Ismagilov RF (2004) Multi-step synthesis of nanoparticles performed on millisecond time scale in a microfluidic droplet-based system. Lab Chip 4:316–321

    Article  CAS  Google Scholar 

  109. Tan WH, Takeuchi S (2007) Monodisperse alginate hydrogel microbeads for cell encapsulation. Adv Mater 19:2696–2701

    Article  CAS  Google Scholar 

  110. Seo M et al (2005) Continuous microfluidic reactors for polymer particles. Langmuir 21:11614–11622

    Article  CAS  Google Scholar 

  111. Dendukuri D et al (2005) Controlled synthesis of nonspherical microparticles using microfluidics. Langmuir 21:2113–2116

    Article  CAS  Google Scholar 

  112. Kobayashi I, Uemura K, Nakajima M (2006) Controlled generation of monodisperse ­discoid droplets using microchannel arrays. Langmuir 22:10893–10897

    Article  CAS  Google Scholar 

  113. Groß GA et al (2007) Formation of polymer and nanoparticle doped polymer minirods by use of the microsegmented flow principle. Chem Eng Technol 30:341–346

    Article  CAS  Google Scholar 

  114. Nisisako T et al (2006) Synthesis of monodisperse bicolored Janus particles with electrical anisotropy using a microfluidic co-flow system. Adv Mater 18:1152–1156

    Article  CAS  Google Scholar 

  115. Shepherd RF et al (2006) Microfluidic assembly of homogeneous and Janus colloid-filled hydrogel granules. Langmuir 22:8618–8622

    Article  CAS  Google Scholar 

  116. Xu S et al (2005) Generation of monodisperse particles by using microfluidics: control over size, shape, and composition. Angew Chem Int Ed Engl 44:3799

    Article  CAS  Google Scholar 

  117. De Geest BG et al (2005) Synthesis of monodisperse biodegradable microgels in microfluidic devices. Langmuir 21:10275–10279

    Article  CAS  Google Scholar 

  118. Yang C-H, Huang K-S, Chang J-Y (2007) Manufacturing monodisperse chitosan microparticles containing ampicillin using a microchannel chip. Biomed Microdevices 9:253–259

    Article  CAS  Google Scholar 

  119. Zourob M et al (2006) A micro-reactor for preparing uniform molecularly imprinted polymer beads. Lab Chip 6:296–301

    Article  CAS  Google Scholar 

  120. Lewis PC et al (2005) Continuous synthesis of copolymer particles in microfluidic reactors. Macromolecules 38:4536–4538

    Article  CAS  Google Scholar 

  121. Carroll NJ et al (2008) Droplet-based microfluidics for emulsion and solvent evaporation synthesis of monodisperse mesoporous silica microspheres. Langmuir 24:658–661

    Article  CAS  Google Scholar 

  122. Huang K-S, Lai T-H, Lin Y-C (2006) Manipulating the generation of Ca-alginate microspheres using microfluidic channels as a carrier of gold nanoparticles. Lab Chip 6:954–957

    Article  CAS  Google Scholar 

  123. Zhang H et al (2006) Microfluidic production of biopolymer microcapsules with controlled morphology. J Am Chem Soc 128:12205–12210

    Article  CAS  Google Scholar 

  124. Choi CH et al (2007) Generation of monodisperse alginate microbeads and in situ encapsulation of cell in microfluidic device. Biomed Microdevices 9:855–862

    Article  CAS  Google Scholar 

  125. Tan J et al (2008) Drop dispenser in a cross-junction microfluidic device: scaling and mechanism of break-up. Chem Eng J 136:306–311

    Article  CAS  Google Scholar 

  126. Hatakeyama T, Chen DL, Ismagilov RF (2006) Microgram-scale testing of reaction conditions in solution using nanoliter plugs in microfluidics with detection by MALDI-MS. J Am Chem Soc 128:2518–2519

    Article  CAS  Google Scholar 

  127. Cygan ZT et al (2005) Microfluidic platform for the generation of organic-phase microreactors. Langmuir 21:3629–3634

    Article  CAS  Google Scholar 

  128. Barnes SE et al (2006) Raman spectroscopic monitoring of droplet polymerization in a microfluidic device. Analyst 131:1027–1033

    Article  CAS  Google Scholar 

  129. Hung LH, Lin R, Lee AP (2008) Rapid microfabrication of solvent-resistant biocompatible microfluidic devices. Lab Chip 8:983–987

    Article  CAS  Google Scholar 

  130. Gerdts CJ, Sharoyan DE, Ismagilov RF (2004) A synthetic reaction network: chemical amplification using nonequilibrium autocatalytic reactions coupled in time. J Am Chem Soc 126:6327–6331

    Article  CAS  Google Scholar 

  131. Chen H et al (2005) Microfluidic chip-based liquid-liquid extraction and preconcentration using a subnanoliter-droplet trapping technique. Lab Chip 5:719–725

    Article  CAS  Google Scholar 

  132. Shen H, Fang Q, Fang ZL (2006) A microfluidic chip based sequential injection system with trapped droplet liquid-liquid extraction and chemiluminescence detection. Lab Chip 6:1387–1389

    Article  CAS  Google Scholar 

  133. Kumemura M, Korenaga T (2006) Quantitative extraction using flowing nano-liter droplet in microfluidic system. Anal Chim Acta 558:75–79

    Article  CAS  Google Scholar 

  134. Mary P, Studer V, Tabeling P (2008) Microfluidic droplet-based liquid-liquid extraction. Anal Chem 80:2680–2687

    Article  CAS  Google Scholar 

  135. Wang WH et al (2007) Flow-focusing generation of monodisperse water droplets wrapped by ionic liquid on microfluidic chips: from plug to sphere. Langmuir 23:11924–11931

    Article  CAS  Google Scholar 

  136. Park N, Kim S, Hahn JH (2003) Cylindrical compact thermal-cycling device for continuous-flow polymerase chain reaction. Anal Chem 75:6029–6033

    Article  CAS  Google Scholar 

  137. Obeid PJ et al (2002) Microfabricated device for DNA and RNA amplification by continuous-flow polymerase chain reaction and reverse transcription-polymerase chain reaction with cycle number selection. Anal Chem 75:288–295

    Article  CAS  Google Scholar 

  138. Obeid PJ, Christopoulos TK (2003) Continuous-flow DNA and RNA amplification chip combined with laser-induced fluorescence detection. Anal Chim Acta 494:1–9

    Article  CAS  Google Scholar 

  139. Kolari K et al (2008) Real-time analysis of PCR inhibition on microfluidic materials. Sens Act B Chem 128:442–449

    Article  CAS  Google Scholar 

  140. Beer NR et al (2007) On-chip, real-time, single-copy polymerase chain reaction in picoliter droplets. Anal Chem 79:8471–8475

    Article  CAS  Google Scholar 

  141. Beer NR et al (2008) On-chip single-copy real-time reverse-transcription PCR in ­isolated picoliter droplets. Anal Chem 80:1854–1858

    Article  CAS  Google Scholar 

  142. Tsuchiya H et al (2008) On-chip polymerase chain reaction microdevice employing a magnetic droplet-manipulation system. Sens Act B Chem 130:583–588

    Article  CAS  Google Scholar 

  143. Kiss MM et al (2008) High-throughput quantitative polymerase chain reaction in picoliter droplets. Anal Chem 80:8975–8981

    Article  CAS  Google Scholar 

  144. Schaerli Y et al (2008) Continuous-flow polymerase chain reaction of single-copy DNA in microfluidic microdroplets. Anal Chem 81:302–306

    Article  CAS  Google Scholar 

  145. Sista R et al (2008) Development of a digital microfluidic platform for point of care testing. Lab Chip 8:2091–2104

    Article  CAS  Google Scholar 

  146. Chang Y-H et al (2006) Integrated polymerase chain reaction chips utilizing digital microfluidics. Biomed Microdevices 8:215–225

    Article  CAS  Google Scholar 

  147. Chabert M et al (2006) Automated microdroplet platform for sample manipulation and polymerase chain reaction. Anal Chem 78:7722–7728

    Article  CAS  Google Scholar 

  148. Kumaresan P et al (2008) High-throughput single copy DNA amplification and cell analysis in engineered nanoliter droplets. Anal Chem 80:3522–3529

    Article  CAS  Google Scholar 

  149. Hua Z et al (2010) Multiplexed real-time polymerase chain reaction on a digital microfluidic platform. Anal Chem 82:2310–2316

    Article  CAS  Google Scholar 

  150. Henkel T et al (2004) Chip modules for generation and manipulation of fluid segments for micro serial flow processes. Chem Eng J 101:439–445

    Article  CAS  Google Scholar 

  151. Song H et al (2006) On-chip titration of an anticoagulant argatroban and determination of the clotting time within whole blood or plasma using a plug-based microfluidic system. Anal Chem 78:4839–4849

    Article  CAS  Google Scholar 

  152. Srinivasan V, Pamula VK, Fair RB (2004) Droplet-based microfluidic lab-on-a-chip for glucose detection. Anal Chim Acta 507:145–150

    Article  CAS  Google Scholar 

  153. Srinivasan V, Pamula VK, Fair RB (2004) An integrated digital microfluidic lab-on-a-chip for clinical diagnostics on human physiological fluids. Lab Chip 4:310–315

    Article  CAS  Google Scholar 

  154. Prakash M, Gershenfeld N (2007) Microfluidic bubble logic. Science 315:832–835

    Article  CAS  Google Scholar 

  155. Fuerstman MJ, Garstecki P, Whitesides GM (2007) Coding/decoding and reversibility of droplet trains in microfluidic networks. Science 315:828–832

    Article  CAS  Google Scholar 

  156. Epstein IR (2007) Can droplets and bubbles think? Science 315:775–776

    Article  CAS  Google Scholar 

  157. Lee W et al (2010) Dynamic self-assembly and control of microfluidic particle crystals. Proc Natl Acad Sci 107:22413–22418

    Article  CAS  Google Scholar 

  158. Cheow LF, Yobas L, Kwong D-L (2007) Digital microfluidics: droplet based logic gates. Appl Phys Lett 90:054107

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjiv Sharma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media,LLC

About this protocol

Cite this protocol

Sharma, S., Srisa-Art, M., Scott, S., Asthana, A., Cass, A. (2013). Droplet-Based Microfluidics. In: Jenkins, G., Mansfield, C. (eds) Microfluidic Diagnostics. Methods in Molecular Biology, vol 949. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-134-9_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-134-9_15

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-133-2

  • Online ISBN: 978-1-62703-134-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics