Skip to main content

Long-Term Culture and Coculture of Primary Rat and Human Hepatocytes

  • Protocol
  • First Online:
Epithelial Cell Culture Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 945))

Abstract

The liver is the largest internal organ in mammals, serving a wide spectrum of vital functions. Loss of liver function due to drug toxicity or viral infection is a major cause of death in the United States. The development of Bioartificial Liver (BAL) devices and the demand for pharmaceutical and cosmetic toxicity screening require the development of long-term hepatocyte culture techniques. However, primary hepatocytes rapidly lose their cuboidal morphology and liver-specific functions over a few days in culture. Accumulation of stress fibers, loss of metabolic function, and cell death are known phenomena. In recent years, several techniques were developed that can support high levels of liver-specific gene expression, metabolic and synthetic function for several weeks in culture. These include the collagen double-gel configuration, hepatocyte spheroids, coculture with endothelial cells, and micropatterned cocultures with 3T3-J2 fibroblasts. This chapter covers the current status of hepatocyte culture techniques, including: hepatocyte isolation, media formulation, oxygen supply, heterotypic cell–cell interactions, and basic functional assays.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nahmias Y, Berthiaume F, Yarmush ML (2007) Integration of technologies for hepatic tissue engineering. Adv Biochem Eng Biotechnol 103:309–329

    PubMed  Google Scholar 

  2. Heron M, Hoyert DL, Murphy SL, Xu J, Kochanek KD, Tejada-Vera B (2009) Deaths: final data for 2006. Natl Vital Stat Rep 57:1–134

    PubMed  Google Scholar 

  3. Block GD, Locker J, Bowen WC, Petersen BE, Katyal S, Strom SC, Riley T, Howard TA, Michalopoulos GK (1996) Population expansion, clonal growth, and specific differentiation patterns in primary cultures of hepatocytes induced by HGF/SF, EGF and TGF alpha in a chemically defined (HGM) medium. J Cell Biol 132:1133–1149

    Article  PubMed  CAS  Google Scholar 

  4. Allen JW, Hassanein T, Bhatia SN (2001) Advances in bioartificial liver devices. Hepatology 34:447–455

    Article  PubMed  CAS  Google Scholar 

  5. DiMasi JA, Hansen RW, Grabowski HG (2003) The price of innovation: new estimates of drug development costs. J Health Econ 22:151–185

    Article  PubMed  Google Scholar 

  6. Pritchard JF, Jurima-Romet M, Reimer ML, Mortimer E, Rolfe B, Cayen MN (2003) Making better drugs: decision gates in non-clinical drug development. Nat Rev Drug Discov 2:542–553

    Article  PubMed  CAS  Google Scholar 

  7. Rodrigues MA, Gomes DA, Andrade VA, Leite MF, Nathanson MH (2008) Insulin induces calcium signals in the nucleus of rat hepatocytes. Hepatology 48:1621–1631

    Article  PubMed  CAS  Google Scholar 

  8. Hewitt NJ, Lechon MJ, Houston JB, Hallifax D, Brown HS, Maurel P, Kenna JG, Gustavsson L, Lohmann C, Skonberg C, Guillouzo A, Tuschl G, Li AP, LeCluyse E, Groothuis GM, Hengstler JG (2007) Primary hepatocytes: current understanding of the regulation of metabolic enzymes and transporter proteins, and pharmaceutical practice for the use of hepatocytes in metabolism, enzyme induction, transporter, clearance, and hepatotoxicity studies. Drug Metab Rev 39:159–234

    Article  PubMed  CAS  Google Scholar 

  9. Kamiya A, Kinoshita T, Ito Y, Matsui T, Morikawa Y, Senba E, Nakashima K, Taga T, Yoshida K, Kishimoto T, Miyajima A (1999) Fetal liver development requires a paracrine action of oncostatin M through the gp130 signal transducer. EMBO J 18:2127–2136

    Article  PubMed  CAS  Google Scholar 

  10. Michalopoulos GK, Khan Z (2005) Liver regeneration, growth factors, and amphiregulin. Gastroenterology 128:503–506

    Article  PubMed  CAS  Google Scholar 

  11. Nahmias Y, Casali M, Barbe L, Berthiaume F, Yarmush ML (2006) Liver endothelial cells promote LDL-R expression and the uptake of HCV-like particles in primary rat and human hepatocytes. Hepatology 43:257–265

    Article  PubMed  CAS  Google Scholar 

  12. Richards CD, Brown TJ, Shoyab M, Baumann H, Gauldie J (1992) Recombinant oncostatin M stimulates the production of acute phase proteins in HepG2 cells and rat primary hepatocytes in vitro. J Immunol 148:1731–1736

    PubMed  CAS  Google Scholar 

  13. Dunn JC, Tompkins RG, Yarmush ML (1991) Long-term in vitro function of adult hepatocytes in a collagen sandwich configuration. Biotechnol Prog 7:237–245

    Article  PubMed  CAS  Google Scholar 

  14. Koide N, Shinji T, Tanabe T, Asano K, Kawaguchi M, Sakaguchi K, Koide Y, Mori M, Tsuji T (1989) Continued high albumin production by multicellular spheroids of adult rat hepatocytes formed in the presence of liver-derived proteoglycans. Biochem Biophys Res Commun 161:385–391

    Article  PubMed  CAS  Google Scholar 

  15. Bhatia SN, Balis UJ, Yarmush ML, Toner M (1999) Effect of cell-cell interactions in preservation of cellular phenotype: cocultivation of hepatocytes and nonparenchymal cells. FASEB J 13:1883–1900

    PubMed  CAS  Google Scholar 

  16. Nishikawa M, Kojima N, Komori K, Yamamoto T, Fujii T, Sakai Y (2008) Enhanced maintenance and functions of rat hepatocytes induced by combination of on-site oxygenation and coculture with fibroblasts. J Biotechnol 133:253–260

    Article  PubMed  CAS  Google Scholar 

  17. Seglen PO (1976) Preparation of isolated rat liver cells. Methods Cell Biol 13:29–83

    Article  PubMed  CAS  Google Scholar 

  18. Berry MN, Grivell AR, Grivell MB, Phillips JW (1997) Isolated hepatocytes—past, present and future. Cell Biol Toxicol 13:223–233

    Article  PubMed  CAS  Google Scholar 

  19. Kidambi S, Yarmush RS, Novik E, Chao P, Yarmush ML, Nahmias Y (2009) Oxygen-mediated enhancement of primary hepatocyte metabolism, functional polarization, gene expression, and drug clearance. Proc Natl Acad Sci U S A 106:15714–15719

    Article  PubMed  CAS  Google Scholar 

  20. Dunn JC, Yarmush ML, Koebe HG, Tompkins RG (1989) Hepatocyte function and extracellular matrix geometry: long-term culture in a sandwich configuration. FASEB J 3:174–177

    PubMed  CAS  Google Scholar 

  21. Berthiaume F, Moghe PV, Toner M, Yarmush ML (1996) Effect of extracellular matrix topology on cell structure, function, and physiological responsiveness: hepatocytes cultured in a sandwich configuration. FASEB J 10:1471–1484

    PubMed  CAS  Google Scholar 

  22. Taub R (2004) Liver regeneration: from myth to mechanism. Nat Rev Mol Cell Biol 5:836–847

    Article  PubMed  CAS  Google Scholar 

  23. Michalopoulos GK, DeFrances MC (1997) Liver regeneration. Science 276:60–66

    Article  PubMed  CAS  Google Scholar 

  24. Yarmush ML, Toner M, Dunn JC, Rotem A, Hubel A, Tompkins RG (1992) Hepatic tissue engineering. Development of critical technologies. Ann N Y Acad Sci 665:238–252

    Article  PubMed  CAS  Google Scholar 

  25. Bhatia SN, Yarmush ML, Toner M (1997) Controlling cell interactions by micropatterning in co-cultures: hepatocytes and 3 T3 fibroblasts. J Biomed Mater Res 34:189–199

    Article  PubMed  CAS  Google Scholar 

  26. Kmiec Z (2001) Cooperation of liver cells in health and disease. Adv Anat Embryol Cell Biol 161:III–XIII, 1–151

    PubMed  CAS  Google Scholar 

  27. Strain AJ (1999) Ex vivo liver cell morphogenesis: one step nearer to the bioartificial liver? Hepatology 29:288–290

    Article  PubMed  CAS  Google Scholar 

  28. Khetani SR, Bhatia SN (2008) Microscale culture of human liver cells for drug development. Nat Biotechnol 26:120–126

    Article  PubMed  CAS  Google Scholar 

  29. Mitaka T, Sato F, Mizuguchi T, Yokono T, Mochizuki Y (1999) Reconstruction of hepatic organoid by rat small hepatocytes and hepatic nonparenchymal cells. Hepatology 29:111–125

    Article  PubMed  CAS  Google Scholar 

  30. Mitaka T (2002) Reconstruction of hepatic organoid by hepatic stem cells. J Hepatobiliary Pancreat Surg 9:697–703

    Article  PubMed  Google Scholar 

  31. Harada K, Mitaka T, Miyamoto S, Sugimoto S, Ikeda S, Takeda H, Mochizuki Y, Hirata K (2003) Rapid formation of hepatic organoid in collagen sponge by rat small hepatocytes and hepatic nonparenchymal cells. J Hepatol 39:716–723

    Article  PubMed  CAS  Google Scholar 

  32. Michalopoulos GK, Bowen WC, Mule K, Stolz DB (2001) Histological organization in hepatocyte organoid cultures. Am J Pathol 159:1877–1887

    Article  PubMed  CAS  Google Scholar 

  33. Goulet F, Normand C, Morin O (1988) Cellular interactions promote tissue-specific function, biomatrix deposition and junctional communication of primary cultured hepatocytes. Hepatology 8:1010–1018

    Article  PubMed  CAS  Google Scholar 

  34. Morin O, Normand C (1986) Long-term maintenance of hepatocyte functional activity in co-culture: requirements for sinusoidal endothelial cells and dexamethasone. J Cell Physiol 129:103–110

    Article  PubMed  CAS  Google Scholar 

  35. Nahmias Y, Schwartz RE, Verfaillie CM, Odde DJ (2005) Laser-guided direct writing for three-dimensional tissue engineering. Biotechnol Bioeng 92:129–136

    Article  PubMed  CAS  Google Scholar 

  36. Milosevic N, Schawalder H, Maier P (1999) Kupffer cell-mediated differential down-regulation of cytochrome P450 metabolism in rat hepatocytes. Eur J Pharmacol 368:75–87

    Article  PubMed  CAS  Google Scholar 

  37. Allen JW, Khetani SR, Bhatia SN (2005) In vitro zonation and toxicity in a hepatocyte bioreactor. Toxicol Sci 84:110–119

    Article  PubMed  CAS  Google Scholar 

  38. Tilles AW, Baskaran H, Roy P, Yarmush ML, Toner M (2001) Effects of oxygenation and flow on the viability and function of rat hepatocytes cocultured in a microchannel flat-plate bioreactor. Biotechnol Bioeng 73:379–389

    Article  PubMed  CAS  Google Scholar 

  39. Arno WT, Harihara B, Partha R, Martin LY, Mehmet T (2001) Effects of oxygenation and flow on the viability and function of rat hepatocytes cocultured in a microchannel flat-plate bioreactor. Biotechnol Bioeng 73:379–389

    Article  Google Scholar 

  40. Fisher R, Peattie R (2007) Controlling tissue microenvironments: biomimetics, transport phenomena, and reacting systems. Adv Biochem Eng Biotechnol 103:1–73

    PubMed  CAS  Google Scholar 

  41. Fariss MW (1990) Oxygen toxicity: unique cytoprotective properties of vitamin E succinate in hepatocytes. Free Radic Biol Med 9:333–343

    Article  PubMed  CAS  Google Scholar 

  42. Martin H, Sarsat JP, Lerche-Langrand C, Housset C, Balladur P, Toutain H, Albaladejo V (2002) Morphological and biochemical integrity of human liver slices in long-term culture: effects of oxygen tension. Cell Biol Toxicol 18:73–85

    Article  PubMed  CAS  Google Scholar 

  43. Berthois Y, Katzenellenbogen JA, Katzenellenbogen BS (1986) Phenol red in tissue culture media is a weak estrogen: implications concerning the study of estrogen-responsive cells in culture. Proc Natl Acad Sci U S A 83:2496–2500

    Article  PubMed  CAS  Google Scholar 

  44. Smedsrod B, Pertoft H (1985) Preparation of pure hepatocytes and reticuloendothelial cells in high yield from a single rat liver by means of Percoll centrifugation and selective adherence. J Leukoc Biol 38:213–230

    PubMed  CAS  Google Scholar 

  45. Moghe PV, Berthiaume F, Ezzell RM, Toner M, Tompkins RG, Yarmush ML (1996) Culture matrix configuration and composition in the maintenance of hepatocyte polarity and function. Biomaterials 17:373–385

    Article  PubMed  CAS  Google Scholar 

  46. Abu-Absi SF, Friend JR, Hansen LK, Hu W-S (2002) Structural polarity and functional bile canaliculi in rat hepatocyte spheroids. Exp Cell Res 274:56–67

    Article  PubMed  CAS  Google Scholar 

  47. Davidson AJ, Zon LI (2003) Love, honor, and protect (your liver). Science 299:835–837

    Article  PubMed  CAS  Google Scholar 

  48. LeCouter J, Moritz DR, Li B, Phillips GL, Liang XH, Gerber H-P, Hillan KJ, Ferrara N (2003) Angiogenesis—independent endothelial protection of liver: role of VEGFR-1. Science 299:890–893

    Article  PubMed  CAS  Google Scholar 

  49. Sugimachi K, Sosef MN, Baust JM, Fowler A, Tompkins RG, Toner M (2004) Long-term function of cryopreserved rat hepatocytes in a coculture system. Cell Transplant 13:187–195

    PubMed  Google Scholar 

  50. Bhandari RN, Riccalton LA, Lewis AL, Fry JR, Hammond AH, Tendler SJ, Shakesheff KM (2001) Liver tissue engineering: a role for co-culture systems in modifying hepatocyte function and viability. Tissue Eng 7:345–357

    Article  PubMed  CAS  Google Scholar 

  51. Khetani SR, Szulgit G, Rio JAD, Barlow C, Bhatia SN (2004) Exploring interactions between rat hepatocytes and nonparenchymal cells using gene expression profiling. Hepatology 40:545–554

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Ms. Candice Calhoun for technical advice. This work was supported by the National Institute of Diabetes and Digestive and Kidney Diseases (K01DK080241) and the European Research Council Starting Grant (TMIHCV 242699). Resources were provided by the Silberman Institute of Life Sciences and the Center for Bioengineering in the Service of Humanity.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaakov Nahmias .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Shulman, M., Nahmias, Y. (2012). Long-Term Culture and Coculture of Primary Rat and Human Hepatocytes. In: Randell, S., Fulcher, M. (eds) Epithelial Cell Culture Protocols. Methods in Molecular Biology, vol 945. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-125-7_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-125-7_17

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-124-0

  • Online ISBN: 978-1-62703-125-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics