Skip to main content

Media and Growth Conditions for Induction of Secondary Metabolite Production

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 944))

Abstract

Growth media and incubation conditions have a very strong influence of secondary metabolite production. There is no consensus on which media are the optimal for metabolite production, but a series of useful and effective media and incubation conditions have been listed here. Chemically well-defined media are suited for biochemical studies, but in order to get chemical diversity expressed in filamentous fungi, sources rich in amino acids, vitamins, and trace metals have to be added, such as yeast extract and oatmeal. A battery of solid agar media is recommended for exploration of chemical diversity as agar plug samples are easily analyzed to get an optimal representation of the qualitative secondary metabolome. Standard incubation for a week at 25°C in darkness is recommended, but optimal conditions have to be modified depending on the ecology and physiology of different filamentous fungi.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Frisvad JC (1981) Physiological criteria and mycotoxin production as aids in identification of common asymmetric Penicillia. Appl Environ Microbiol 41:568–579

    PubMed  CAS  Google Scholar 

  2. Frisvad JC, Filtenborg O (1983) Classification of terverticillate Penicillia based on profiles of mycotoxins and other secondary metabolites. Appl Environ Microbiol 46:1301–1310

    PubMed  CAS  Google Scholar 

  3. Frisvad JC, Filtenborg O (1989) Terverticillate penicillia: chemotaxonomy and mycotoxin production. Mycologia 81:836–861

    Article  Google Scholar 

  4. Frisvad JC, Samson RA (2004) Polyphasic taxonomy of Penicillium subgenus Penicillium. A guide to identification of the food and air-borne terverticillate Penicillia and their mycotoxins. Stud Mycol 49:1–173

    Google Scholar 

  5. Frisvad JC, Filtenborg O, Samson RA, Stolk AC (1990) Chemotaxonomy of the genus Talaromyces. Antonie Van Leeuwenhoek 57:179–189

    Article  PubMed  CAS  Google Scholar 

  6. Frisvad JC, Andersen B, Thrane U (2008) The use of secondary metabolite profiling in fungal taxonomy. Mycol Res 112:231–240

    Article  PubMed  CAS  Google Scholar 

  7. Bode HB, Bethe B, Höfs R, Zeeck A (2002) Big effects from small changes: possible ways to explore nature’s chemical diversity. Chembiochem 3:619–627

    Article  PubMed  CAS  Google Scholar 

  8. Bayram Ö, Krappmann S, Ni M, Bok JW, Helmstaedt K, Valerius O, Braus-Stromeyer S, Kwon N-J, Keller NP, Yu J-H, Braus GH (2008) VelB/VeA/LaeA complex coordinates light signal with fungal development and secondary metabolism. Science 320:1504–1506

    Article  PubMed  CAS  Google Scholar 

  9. Bills GF, Platas G, Fillola A, Jimenez MR, Collado J, Vicente F, Martin J, Gonzalez A, Bur-Zimmermann J, Tormo JR, Pelaez F (2008) Enhancement of antibiotic and secondary metabolite detection from filamentous fungi by growth on nutritional arrays. J Appl Microbiol 104:1644–1658

    Article  PubMed  CAS  Google Scholar 

  10. Bok JW, Chiang YM, Szewczyk E, Reyes-Domingez Y, Davidson AD, Sanchez JF, Lo HC, Watanabe K, Strauss J, Oakley BR, Wang CCC, Keller NP (2009) Chromatin-level regulation of biosynthetic gene clusters. Nat Chem Biol 5:462–464

    Article  PubMed  CAS  Google Scholar 

  11. Chiang Y-M, Oakley BR, Keller NP, Wang CCC (2010) Unraveling polyketide synthesis in members of the genus Aspergillus. Appl Microbiol Biotechnol 86:1719–1736

    Article  PubMed  CAS  Google Scholar 

  12. Chiang YM, Chang SL, Oakley BR, Wang CCC (2011) Recent advances in awakening silent biosynthetic gene clusters to natural products in microorganisms. Curr Opin Chem Biol 15:137–143

    Article  PubMed  CAS  Google Scholar 

  13. Cichewicz RH (2010) Epigenome ­manipulation as a pathway to new natural product scaffolds and their congeners. Nat Prod Rep 27:11–22

    Article  PubMed  CAS  Google Scholar 

  14. Corrochano LM, Cerda Olmedo E (1992) Sex, light and carotenes - the development of Phycomyces. Trends Genet 8:268–274

    Article  PubMed  CAS  Google Scholar 

  15. Graafman WD (1974) Metabolism in Penicillium isariiforme on exposure to light, with special reference to citric acid synthesis. J Gen Microbiol 82:247–252

    Article  Google Scholar 

  16. Knight V, Sanglier J-J, Tullio D, Braccili D, Bonner P, Waters J, Hughes P, Zhang L (2003) Diversifying microbial natural products for drug discovery. Appl Microbiol Biotechnol 62:446–458

    Article  PubMed  CAS  Google Scholar 

  17. Nielsen PV, Beuchat LR, Frisvad JC (1988) Growth and fumitremorgin production by Neosartorya fischeri as affected by temperature, light, and water activity. Appl Environ Microbiol 54:1504–1510

    PubMed  CAS  Google Scholar 

  18. Pettit PK (2011) Small molecule elicitation of microbial secondary metabolites. Microb Biotechnol 4:471–478

    Article  PubMed  CAS  Google Scholar 

  19. Scherlach K, Hertweck C (2009) Triggering cryptic natural product biosynthesis in microorganisms. Org Biomol Chem 7:1753–1760

    Article  PubMed  CAS  Google Scholar 

  20. Schmidt-Heydt M, Baxter E, Geisen R, Magan N (2007) Physiological relationships between food preservatives, environmental factors, ochratoxin and otapksPv gene expression by Penicillium verrucosum. Int J Food Microbiol 119:277–283

    Article  PubMed  CAS  Google Scholar 

  21. Schmidt-Heydt M, Magan N, Geisen R (2008) Stress induction of mycotoxin biosynthesis genes by abiotic factors. FEMS Microbiol Lett 284:142–149

    Article  PubMed  CAS  Google Scholar 

  22. Schmidt-Heydt M, Rüfer C, Raupp F, Bruchmann A, Perrone G, Geisen R (2011) Influence of light on food relevant fungi with emphasis on ochratoxin producing species. Int J Food Microbiol 145:229–237

    Article  PubMed  CAS  Google Scholar 

  23. Sørensen LM, Lametsch R, Andersen MR, Nielsen PV, Frisvad JC (2009) Proteome analysis of Aspergillus niger: Lactate added in starch-containing medium can increase production of the mycotoxin fumonisin B2 by modifying acetyl-CoA metabolism. BMC Microbiol 9:255

    Article  PubMed  Google Scholar 

  24. Van Eijk GW (1973) Anthraquinones in fungus Talaromyces stipitatus. Experientia 29:522–523

    Article  PubMed  Google Scholar 

  25. Wang FZ, Wei HJ, Zhu TJ, Li DH, Linz J, Gu QQ (2011) Three new cytochalasins from the marine-derived fungus Spicaria elegans KLA03 by supplementing the cultures with L- and D-tryptophan. Chem Biodivers 8:887–894

    Article  PubMed  CAS  Google Scholar 

  26. Williams RB, Henrikson JC, Hoover AR, Lee AE, Cichewicz RH (2008) Epigenetic remodeling of the fungal secondary metabolome. Org Biomol Chem 6:1895–1897

    Article  PubMed  CAS  Google Scholar 

  27. Ito T, Odake T, Katoh H, Yamaguchi Y, Aoki M (2011) High-throughput profiling of microbial extracts. J Nat Prod 74:983–988

    Article  PubMed  CAS  Google Scholar 

  28. Kjer J, Debbab A, Proksch P (2010) Methods for isolation of marine-derived endophytic fungi and their bioactive secondary metabolites. Nat Protoc 5:479–490

    Article  PubMed  CAS  Google Scholar 

  29. MacGeorge KM, Mantle PG (1990) Nephrotoxicity of Penicillium aurantiogriseum and P. commune from an endemic nephropathy area of Yugoslavia. Mycopathology 112:139–145

    Article  CAS  Google Scholar 

  30. Wicklow DT, Dowd PF, TePaske MR, Gloer JB (1988) Sclerotial metabolites of Aspergillus flavus toxic to a detrivorous maize insect (Carpophilus hemiterus, Nitidulidae). Trans Br Mycol Soc 91:433–438

    Article  CAS  Google Scholar 

  31. Liu J, Li F, Kim EL, Li JL, Hong J, Bae KS, Chung HY, Kim HS, Jung JH (2011) Antibacterial polyketides from the jellyfish-derived fungus Paecilomyces variotii. J Nat Prod 74:1826–1829

    Article  PubMed  CAS  Google Scholar 

  32. Filtenborg O, Frisvad JC, Thrane U (1990) The significance of yeast extract composition on metabolite production in Penicillium. In: Samson RA, Pitt JI (eds) Modern concepts in Penicillium and Aspergillus classification. Plenum, New York, pp 433–441

    Google Scholar 

  33. Gaudreau H, Champagne CP, Conway J, Degré R (1999) Effect of ultrafiltration on yeast extracts on their ability to promote lactic acid bacteria growth. Can J Microbiol 45:891–897

    Article  PubMed  CAS  Google Scholar 

  34. Odds FC, Hall CA, Abbott AB (1978) Peptones and mycological reproducibility. Sabouraudia 16:237–246

    Article  PubMed  CAS  Google Scholar 

  35. Frisvad JC, Filtenborg O, Thrane U, Samson RA (2000) Collaborative study on stipe roughness and conidium form in some terverticillate penicillia. In: Samson RA, Pitt JI (eds) Integration of modern taxonomic methods for Aspergillus and Penicillium classification. Harwood Scientific Publishers, Reading, MA, pp 113–125

    Google Scholar 

  36. Nielsen ML, Nielsen JB, Rank C, Klejnstrup ML, Holm DMK, Brogaard KH, Hansen BG, Frisvad JC, Larsen TO, Mortensen UH (2011) A genome-wide polyketide synthase deletion library uncovers novel genetic links to polyketides and meroterpenoids in Aspergillus nidulans. FEMS Microbiol Lett 321:157–166

    Article  PubMed  CAS  Google Scholar 

  37. Pimenta EF, Vita-Marques AM, Tininis A, Seleghim MHR, Sette LD, Veloso K, Fereirra AG, Williams DE, Patrick BO, Dalisay DS, Andersen RJ, Berkinck RGS (2010) Use of experimental design for the optimization of new secondary metabolites in two Penicillium species. J Nat Prod 73:1827–1832

    Article  Google Scholar 

  38. Ghosh J, Häggblom P (1985) Effect of sublethal concentrations of propionic acid or butyric acid on growth and aflatoxin production by Aspergillus flavus. Int J Food Microbiol 2:323–330

    Article  CAS  Google Scholar 

  39. Pitt JI (1979) The genus Penicillium and its teleomorphic states Eupenicillium and Talaromyces. Academic, New York

    Google Scholar 

  40. Davis ND, Diener UL, Eldridge DW (1966) Production of aflatoxins B1 and G1 by Aspergillus flavus in a semisynthetic medium. Appl Microbiol 14:378–380

    PubMed  CAS  Google Scholar 

  41. Samson RA, Houbraken J, Thrane U, Frisvad JC, Andersen B (2010) Food and indoor fungi. CBS laboratory manual Series 2. CBS KNAW Fungal Biodiversity Center, Utrecht, NL, 381 pp

    Google Scholar 

  42. Pitt JI (1973) An appraisal of identification methods for Penicillium species: novel taxonomic criteria based on temperature and water relations. Mycologia 65:1135–1157

    Article  PubMed  CAS  Google Scholar 

  43. Leistner L, Pitt JI (1977) Miscellaneous Penicillium toxins. In: Rodricks JV, Hesseltine CW, Mehlmann MA (eds) Mycotoxins in human and animal health. Pathotox Publishers, Park Forest South, IL, pp 639–653

    Google Scholar 

  44. Raper KB, Thom C (1949) Manual of the Penicillia. Williams & Wilkins, Baltimore, MD

    Google Scholar 

  45. Bullerman LB (1974) A screening medium and method to detect several mycotoxins in mold cultures. J Milk Food Technol 37:1–3

    CAS  Google Scholar 

  46. Frisvad JC, Smedsgaard J, Samson RA, Larsen TO, Thrane U (2007) Fumonisin B2 production by Aspergillus niger. J Agric Food Chem 55:9727–9732

    Article  PubMed  CAS  Google Scholar 

  47. Jennesen J, Nielsen KF, Houbraken J, Lyhne EK, Schnürer J, Frisvad JC, Samson RA (2005) Secondary metabolite and mycotoxin production by the Rhizopus microsporus group. J Agric Food Chem 53:1833–1840

    Article  Google Scholar 

  48. Bertani G (1951) Studies on lysogenesis. I. The mode of phage liberation by lysogenic Escherichia coli. J Bacteriol 62:293–300

    PubMed  CAS  Google Scholar 

  49. Bertani G (2004) Lysogeny at mid-twentieth century: P1, P2, and other experimental systems. J Bacteriol 186:595–600

    Article  PubMed  CAS  Google Scholar 

  50. Aly AH, Debbab A, Proksch P (2011) Fungal endophytes: unique plant inhabitants with great promises. Appl Microbiol Biotechnol 90:1829–1845

    Article  PubMed  CAS  Google Scholar 

  51. Chu Y-S, Niu X-M, Wang Y-L, Guo J-P, Pan W-Z, Huang X-W, Zhang K-Q (2010) Isolation of putative biosynthetic intermediates of prenylated indole alkaloids from a thermophilic fungus Talaromyces thermophilus. Org Lett 12:4356–4359

    Article  PubMed  CAS  Google Scholar 

  52. Frisvad JC, Larsen TO, Dalsgaard PW, Seifert KA, Louis-Seize G, Lyhne EK, Jarvis BB, Fettinger JC, Overy DP (2006) Four psychrotolerant species with high chemical diversity consistently producing cycloaspeptide A, P. jamesonlandense sp. nov., P. ribium sp. nov., P. soppii and P. lanosum. Int J Syst Evol Microbiol 56:1427–1437

    Article  PubMed  CAS  Google Scholar 

  53. Baxter CJ, Magan N, Lane B, Wildman HG (1998) Influence of water activity and temperature on in vitro growth of surface culture of a Phoma sp. Appl Microbiol Biotechnol 49:328–332

    Article  CAS  Google Scholar 

  54. Jayashree T, Subramanyam C (2000) Oxidative stress as a prerequisite for aflatoxin production by Aspergilus parasiticus. Free Radic Biol Med 29:981–985

    Article  PubMed  CAS  Google Scholar 

  55. Smedsgaard J (1997) Micro-scale extraction procedure for standardized screening of frungal metabolite production in cultures. J Chromatogr A 760:264–270

    Article  PubMed  CAS  Google Scholar 

  56. Nielsen KF, Månsson M, Rank C, Frisvad JC, Larsen TO (2011) Dereplication of microbial natural products by LC-DAD-TOFMS. Statically analysis of adduct formation, in-source fragmentation and chromatographic retention as an in-house standard database of 719 microbial metabolites and mycotoxins. J Nat Prod 74(11):2338–2348

    Article  PubMed  CAS  Google Scholar 

  57. Frisvad JC, Thrane U (1987) Standardized High-Performance Liquid Chromatography of 182 mycotoxins and other fungal metabolites based on alkylphenone indices and UV-VIS spectra (diode-array detection). J Chromatogr 404:195–214

    Article  PubMed  CAS  Google Scholar 

  58. Frisvad JC, Thrane U (1993) Liquid column chromatography of mycotoxins. In: Betina V (ed) Chromatography of mycotoxins: techniques and applications. Elsevier, Amsterdam, pp 253–372

    Chapter  Google Scholar 

  59. Frisvad JC (1983) A selective and indicative medium for groups of Penicillium viridicatum producing different mycotoxins in cereals. J Appl Bacteriol 54:409–416

    Article  PubMed  CAS  Google Scholar 

  60. Andersen B, Sørensen JL, Nielsen KF, van den Ende BG, de Hoog S (2009) A polyphasic approach to the taxonomy of the Alternaria infectoria species-group. Fungal Genet Biol 46:642–656

    Article  PubMed  CAS  Google Scholar 

  61. Reshetilova TA, Solov’eva TF, Baskunov BP, Kozlovskii AG (1992) Investigation of alkaloid formation by certain species of fungi of the Penicillium genus. Mikrobiologiya 61:873–879

    CAS  Google Scholar 

  62. Frisvad JC, Filtenborg O, Wicklow DT (1987) Terverticillate penicillia isolated from underground seed caches and cheek pouches of banner-tailed kangaroo rats (Dipodomys spectabilis). Can J Bot 65:765–773

    Article  CAS  Google Scholar 

  63. Pitt JI, Hocking AD, Glenn DR (1983) An improved medium for the detection of Aspergillus flavus and A. parasiticus. J Appl Bacteriol 54:109–114

    Article  PubMed  CAS  Google Scholar 

  64. Nielsen KF, Larsen TO, Frisvad JC (2004) Lightweight expanded clay aggregates (LECA), a new up-scaleable matrix for production of microfungal metabolites. J Antibiot 57:29–36

    Article  PubMed  CAS  Google Scholar 

  65. Olson LW, Lange L (1989) The use of BASF pluronic polyol F-127, low temperature liquefying polyol, for the isolation of microbial antagonists. Opera Bot 100:197–199

    Google Scholar 

  66. Reeslev M, Kjøller A (1995) Comparison of biomass dry weights and radial growth rates of fungal colonies on media solidified with different gelling compounds. Appl Environ Microbiol 61:4236–4239

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The project was supported by the Danish Research Council for Technology and Production.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jens C. Frisvad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Frisvad, J.C. (2012). Media and Growth Conditions for Induction of Secondary Metabolite Production. In: Keller, N., Turner, G. (eds) Fungal Secondary Metabolism. Methods in Molecular Biology, vol 944. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-122-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-122-6_3

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-121-9

  • Online ISBN: 978-1-62703-122-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics