Skip to main content

Chromatin Immunoprecipitation Analysis in Filamentous Fungi

  • Protocol
  • First Online:
Fungal Secondary Metabolism

Part of the book series: Methods in Molecular Biology ((MIMB,volume 944))

Abstract

Chromatin immunoprecipitation (ChIP) is used to map the interaction between proteins and DNA at a specific genomic locus in the living cell. The protein–DNA complexes are stabilized already in vivo by reversible crosslinking and the DNA is sheared by sonication or enzymatic digestion into fragments suitable for the subsequent immunoprecipitation step. Antibodies recognizing chromatin-linked proteins, transcription factors, artificial tags, or specific protein modifications are then used to pull down DNA–protein complexes containing the target. After reversal of crosslinks and DNA purification locus-specific quantitative PCR is used to determine the amount of DNA that was associated with the target at a given time point and experimental condition. DNA quantification can be carried out for several genomic regions by multiple qPCRs or at a genome-wide scale by massive parallel sequencing (ChIP-Seq).

These two authors contributed equally to the work

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Belden WJ, Loros JJ, Dunlap JC (2007) Execution of the circadian negative feedback loop in Neurospora requires the ATP-dependent chromatin-remodeling enzyme CLOCKSWITCH. Mol Cell 25:587–600

    Article  PubMed  CAS  Google Scholar 

  2. Bernreiter A, Ramon A, Fernández-Martínez J, Berger H, Araújo-Bazan L, Espeso EA, Pachlinger R, Gallmetzer A, Anderl I, Scazzocchio C et al (2007) Nuclear export of the transcription factor NirA is a regulatory checkpoint for nitrate induction in Aspergillus nidulans. Mol Cell Biol 27:791–802

    Article  PubMed  CAS  Google Scholar 

  3. Gonzalez R, Scazzocchio C (1997) A rapid method for chromatin structure analysis in the filamentous fungus Aspergillus nidulans. Nucleic Acids Res 25:3955–3956

    Article  PubMed  CAS  Google Scholar 

  4. Grimaldi B, Coiro P, Filetici P, Berge E, Dobosy JR, Freitag M, Selker EU, Ballario P (2006) The Neurospora crassa white collar-1 dependent blue light response requires acetylation of histone H3 lysine 14 by NGF-1. Mol Biol Cell 17:4576–4583

    Article  PubMed  CAS  Google Scholar 

  5. Solomon MJ, Varshavsky A (1985) Formaldehyde-mediated DNA-protein crosslinking: a probe for in vivo chromatin structures. Proc Natl Acad Sci USA 82:6470–6474

    Article  PubMed  CAS  Google Scholar 

  6. Solomon MJ, Larsen PL, Varshavsky A (1988) Mapping protein-DNA interactions in vivo with formaldehyde: evidence that histone H4 is retained on a highly transcribed gene. Cell 53:937–947

    Article  PubMed  CAS  Google Scholar 

  7. Basheer A, Berger H, Reyes-Dominguez Y, Gorfer M, Strauss J (2009) A library-based method to rapidly analyse chromatin accessibility at multiple genomic regions. Nucleic Acids Res 37:e42

    Article  PubMed  Google Scholar 

  8. Pillai S, Chellappan SP (2009) ChIP on chip assays: genome-wide analysis of transcription factor binding and histone modifications. Methods Mol Biol 523:341–366

    Article  PubMed  CAS  Google Scholar 

  9. Collas P, Dahl JA (2008) Chop it, ChIP it, check it: the current status of chromatin immunoprecipitation. Front Biosci 13:929–943

    Article  PubMed  CAS  Google Scholar 

  10. Ma W, Wong WH (2011) The analysis of ChIP-Seq data. Methods Enzymol 497:51–73

    Article  PubMed  CAS  Google Scholar 

  11. Barski A, Zhao K (2009) Genomic location analysis by ChIP-Seq. J Cell Biochem 107:11–18

    Article  PubMed  CAS  Google Scholar 

  12. Jothi R, Cuddapah S, Barski A, Cui K, Zhao K (2008) Genome-wide identification of in vivo protein-DNA binding sites from ChIP-Seq data. Nucleic Acids Res 36:5221–5231

    Article  PubMed  CAS  Google Scholar 

  13. Smith KM, Sancar G, Dekhang R, Sullivan CM, Li S, Tag AG, Sancar C, Bredeweg EL, Priest HD, McCormick RF et al (2010) Transcription factors in light and circadian clock signaling networks revealed by genomewide mapping of direct targets for Neurospora white collar complex. Eukaryot Cell 9:1549–1556

    Article  PubMed  CAS  Google Scholar 

  14. Smith KM, Phatale PA, Sullivan CM, Pomraning KR, Freitag M (2011) Heterochromatin is required for normal distribution of Neurospora crassa CenH3. Mol Cell Biol 31:2528–2542

    Article  PubMed  CAS  Google Scholar 

  15. Wolschek MF, Narendja F, Karlseder J, Kubicek CP, Scazzocchio C, Strauss J (1998) In situ detection of protein-DNA interactions in filamentous fungi by in vivo footprinting. Nucleic Acids Res 26:3862–3864

    Article  PubMed  CAS  Google Scholar 

  16. Bernreiter A, Ramon A, Fernandez-Martinez J, Berger H, Araujo-Bazan L, Espeso EA, Pachlinger R, Gallmetzer A, Anderl I, Scazzocchio C et al (2007) Nuclear export of the transcription factor NirA is a regulatory checkpoint for nitrate induction in Aspergillus nidulans. Mol Cell Biol 27:791–802

    Article  PubMed  CAS  Google Scholar 

  17. Berger H, Basheer A, Bock S, Reyes-Dominguez Y, Dalik T, Altmann F, Strauss J (2008) Dissecting individual steps of nitrogen transcription factor cooperation in the Aspergillus nidulans nitrate cluster. Mol Microbiol 69:1385–1398

    Article  PubMed  CAS  Google Scholar 

  18. Bok JW, Chiang YM, Szewczyk E, Reyes-Dominguez Y, Davidson AD, Sanchez JF, Lo HC, Watanabe K, Strauss J, Oakley BR et al (2009) Chromatin-level regulation of biosynthetic gene clusters. Nat Chem Biol 5:462–464

    Article  PubMed  CAS  Google Scholar 

  19. Reyes-Dominguez Y, Bok JW, Berger H, Shwab EK, Basheer A, Gallmetzer A, Scazzocchio C, Keller N, Strauss J (2010) Heterochromatic marks are associated with the repression of secondary metabolism clusters in Aspergillus nidulans. Mol Microbiol 76:1376–1386

    Article  PubMed  CAS  Google Scholar 

  20. Reyes-Dominguez Y, Boedi S, Sulyok M, Wiesenberger G, Stoppacher N, Krska R, Strauss J (2011) Heterochromatin influences the secondary metabolite profile in the plant pathogen Fusarium graminearum. Fungal Genet Biol 49(1):39–47

    Article  PubMed  Google Scholar 

  21. Nutzmann HW, Reyes-Dominguez Y, Scherlach K, Schroeckh V, Horn F, Gacek A, Schumann J, Hertweck C, Strauss J, Brakhage AA (2011) Bacteria-induced natural product formation in the fungus Aspergillus nidulans requires Saga/Ada-mediated histone acetylation. Proc Natl Acad Sci USA 108:14282–14287

    Article  PubMed  CAS  Google Scholar 

  22. Reyes-Dominguez Y, Narendja F, Berger H, Gallmetzer A, Fernandez-Martin R, Garcia I, Scazzocchio C, Strauss J (2008) Nucleosome positioning and histone H3 acetylation are independent processes in the Aspergillus nidulans prnD-prnB bidirectional promoter. Eukaryot Cell 7:656–663

    Article  PubMed  CAS  Google Scholar 

  23. Roze LV, Arthur AE, Hong SY, Chanda A, Linz JE (2007) The initiation and pattern of spread of histone H4 acetylation parallel the order of transcriptional activation of genes in the aflatoxin cluster. Mol Microbiol 66:713–726

    Article  PubMed  CAS  Google Scholar 

  24. Roze LV, Miller MJ, Rarick M, Mahanti N, Linz JE (2004) A novel cAMP-response ­element, CRE1, modulates expression of nor-1 in Aspergillus parasiticus. J Biol Chem 279:27428–27439

    Article  PubMed  CAS  Google Scholar 

  25. Ballario P, Vittorioso P, Magrelli A, Talora C, Cabibbo A, Macino G (1996) White collar-1, a central regulator of blue light responses in Neurospora, is a zinc finger protein. EMBO J 15:1650–1657

    PubMed  CAS  Google Scholar 

  26. Linden H, Macino G (1997) White collar 2, a partner in blue-light signal transduction, controlling expression of light-regulated genes in Neurospora crassa. EMBO J 16:98–109

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

ChIP development and optimization in A. nidulans was supported by grants from the Austrian Science Fund P19731-B11 and Vienna Science and Technology Fund—WWTF—Project LS 09-042. The adaptation to Fusarium species was carried out in the frame of the Austrian Science Fund “Special Research AreA” Project SFB–S10003.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph Strauss .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Boedi, S., Reyes-Dominguez, Y., Strauss, J. (2012). Chromatin Immunoprecipitation Analysis in Filamentous Fungi. In: Keller, N., Turner, G. (eds) Fungal Secondary Metabolism. Methods in Molecular Biology, vol 944. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-122-6_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-122-6_16

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-121-9

  • Online ISBN: 978-1-62703-122-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics