Skip to main content

Identification of Protein Complexes from Filamentous Fungi with Tandem Affinity Purification

  • Protocol
  • First Online:
Fungal Secondary Metabolism

Part of the book series: Methods in Molecular Biology ((MIMB,volume 944))

Abstract

Fungal molecular biology has benefited from the enormous advances in understanding protein–protein interactions in prokaryotic or eukaryotic organisms of the past decade. Tandem affinity purification (TAP) allows the enrichment of native protein complexes from cell extracts under mild conditions. We codon-optimized tags and established TAP, previously not applicable to filamentous fungi, for the model organism Aspergillus nidulans. We could identify by this method the trimeric Velvet complex VelB/VeA/LaeA or the eight subunit COP9 signalosome. Here, we describe an optimized protocol for A. nidulans which can also be adapted to other filamentous fungi.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Puig O, Caspary F, Rigaut G, Rutz B, Bouveret E, Bragado-Nilsson E, Wilm M, Seraphin B (2001) The tandem affinity purification (TAP) method: a general procedure of protein complex purification. Methods 24:218–229

    Article  PubMed  CAS  Google Scholar 

  2. Rigaut G, Shevchenko A, Rutz B, Wilm M, Mann M, Seraphin B (1999) A generic protein purification method for protein complex characterization and proteome exploration. Nat Biotechnol 17:1030–1032

    Article  PubMed  CAS  Google Scholar 

  3. Butland G, Zhang JW, Yang W, Sheung A, Wong P, Greenblatt JF, Emili A, Zamble DB (2006) Interactions of the Escherichia coli hydrogenase biosynthetic proteins: HybG complex formation. FEBS Lett 580:677–681

    Article  PubMed  CAS  Google Scholar 

  4. Rohila JS, Chen M, Cerny R, Fromm ME (2004) Improved tandem affinity purification tag and methods for isolation of protein ­heterocomplexes from plants. Plant J 38:172–181

    Article  PubMed  CAS  Google Scholar 

  5. Rohila JS, Chen M, Chen S, Chen J, Cerny R, Dardick C, Canlas P, Xu X, Gribskov M, Kanrar S, Zhu JK, Ronald P, Fromm ME (2006) Protein-protein interactions of tandem affinity purification-tagged protein kinases in rice. Plant J 46:1–13

    Article  PubMed  CAS  Google Scholar 

  6. Burckstummer T, Bennett KL, Preradovic A, Schutze G, Hantschel O, Superti-Furga G, Bauch A (2006) An efficient tandem affinity purification procedure for interaction proteomics in mammalian cells. Nat Methods 3:1013–1019

    Article  PubMed  Google Scholar 

  7. Gregan J, Riedel CG, Petronczki M, Cipak L, Rumpf C, Poser I, Buchholz F, Mechtler K, Nasmyth K (2007) Tandem affinity purification of functional TAP-tagged proteins from human cells. Nat Protoc 2:1145–1151

    Article  PubMed  CAS  Google Scholar 

  8. Gyuris J, Golemis E, Chertkov H, Brent R (1993) Cdi1, a human G1 and S phase protein phosphatase that associates with Cdk2. Cell 75:791–803

    Article  PubMed  CAS  Google Scholar 

  9. Hoff B, Kuck U (2005) Use of bimolecular fluorescence complementation to demonstrate transcription factor interaction in nuclei of ­living cells from the filamentous fungus Acremonium chrysogenum. Curr Genet 47:132–138

    Article  PubMed  CAS  Google Scholar 

  10. Hu CD, Chinenov Y, Kerppola TK (2002) Visualization of interactions among bZIP and Rel family proteins in living cells using bimolecular fluorescence complementation. Mol Cell 9:789–798

    Article  PubMed  CAS  Google Scholar 

  11. Busch S, Schwier EU, Nahlik K, Bayram O, Helmstaedt K, Draht OW, Krappmann S, Valerius O, Lipscomb WN, Braus GH (2007) An eight-subunit COP9 signalosome with an intact JAMM motif is required for fungal fruit body formation. Proc Natl Acad Sci USA 104:8089–8094

    Article  PubMed  CAS  Google Scholar 

  12. Helmstaedt K, Laubinger K, Vosskuhl K, Bayram O, Busch S, Hoppert M, Valerius O, Seiler S, Braus GH (2008) The nuclear migration protein NUDF/LIS1 forms a complex with NUDC and BNFA at spindle pole bodies. Eukaryot Cell 7:1041–1052

    Article  PubMed  CAS  Google Scholar 

  13. Bayram O, Krappmann S, Ni M, Bok JW, Helmstaedt K, Valerius O, Braus-Stromeyer S, Kwon NJ, Keller NP, Yu JH, Braus GH (2008) VelB/VeA/LaeA complex coordinates light signal with fungal development and secondary metabolism. Science 320:1504–1506

    Article  PubMed  CAS  Google Scholar 

  14. Braus GH, Irniger S, Bayram O (2010) Fungal development and the COP9 signalosome. Curr Opin Microbiol 13:672–676

    Article  PubMed  CAS  Google Scholar 

  15. Sarikaya Bayram O, Bayram O, Valerius O, Park H, Irniger S, Gerke J, Ni M, Han K, Yu JH, Braus GH (2010) LaeA control of velvet family regulatory proteins for light-dependent development and fungal cell-type specificity. PLoS Genet 6:e1001226

    Article  PubMed  Google Scholar 

  16. James GT (1978) Inactivation of the protease inhibitor phenylmethylsulfonyl fluoride in buffers. Anal Biochem 86:574–579

    Article  PubMed  CAS  Google Scholar 

  17. Neuhoff V, Arold N, Taube D, Ehrhardt W (1988) Improved staining of proteins in polyacrylamide gels including isoelectric focusing gels with clear background at nanogram sensitivity using Coomassie Brilliant Blue G-250 and R-250. Electrophoresis 25:1327–1333

    Google Scholar 

  18. Blum H, Hildburg B, Hans JG (1987) Improved silver staining of plant proteins. RNA and DNA in polyacrylamide gels. Electrophoresis 8:93–99

    Article  CAS  Google Scholar 

  19. Shevchenko A, Wilm M, Vorm O, Mann M (1996) Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels. Anal Chem 68:850–858

    Article  PubMed  CAS  Google Scholar 

  20. Valerius O, Kleinschmidt M, Rachfall N, Schulze F, Lopez Marin S, Hoppert M, Streckfuss-Bomeke K, Fischer C, Braus GH (2007) The Saccharomyces homolog of mammalian RACK1, Cpc2/Asc1p, is required for FLO11-dependent adhesive growth and dimorphism. Mol Cell Proteomics 6:1968–1979

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work has been funded by grants from the Deutsche Forschungsgemeinschaft (DFG), the Volkswagen-Stiftung, and the Fonds der Chemischen Industrie. Özlem Sarikaya Bayram is supported by the excellence stipend of Göttingen Graduate School for Neurosciences and Molecular Biosciences (GGNB) and Bastian Jöhnk by the German-Mexican DFG Research Unit 1334.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerhard H. Braus .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Bayram, Ö., Bayram, Ö.S., Valerius, O., Jöhnk, B., Braus, G.H. (2012). Identification of Protein Complexes from Filamentous Fungi with Tandem Affinity Purification. In: Keller, N., Turner, G. (eds) Fungal Secondary Metabolism. Methods in Molecular Biology, vol 944. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-122-6_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-122-6_14

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-121-9

  • Online ISBN: 978-1-62703-122-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics