Skip to main content

Fast and Easy Method for Construction of Plasmid Vectors Using Modified Quick-Change Mutagenesis

  • Protocol
  • First Online:
Fungal Secondary Metabolism

Part of the book series: Methods in Molecular Biology ((MIMB,volume 944))

Abstract

Plasmid vector construction is an essential step for molecular microbiology yet often a time-consuming process. Manipulation of the fungal genome to express genes to activate secondary metabolite production often requires creation of plasmid constructs in a reiterative fashion. Here we introduce a modified Quick-change site-directed mutagenesis method that allows for rapid and accurate construction of fungal transformation vectors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual. Cold Spring Harbor, New York

    Google Scholar 

  2. Williams SG, Cranenburgh RM, Weiss AME, Wrighton CJ, Sherratt DJ, Hanak JAJ (1998) Repressor titration: a novel system for selection and stable maintenance of recombinant plasmids. Nucleic Acids Res 26:2120–2124

    Article  PubMed  CAS  Google Scholar 

  3. Cohen SN (1993) Bacterial plasmids: their extraordinary contribution to molecular genetics. Gene 135:67–76

    Article  PubMed  CAS  Google Scholar 

  4. Bahl MI, Hansen LH, Sørensen SJ (2009) Persistence mechanisms of conjugative plasmids. Methods Mol Biol 532:73–102

    Article  PubMed  CAS  Google Scholar 

  5. Innis MA, Gelfand DH, Sninsky JJ, White TJ (1990) PCR protocol: a guide to methods and applications. Academic, San Diego

    Google Scholar 

  6. Arredondo-Peter R, Bonic A, Sarath G, Klucas RV (1995) Commentary: rapid PCR-based detection of inserts from cDNA libraries using phage pools or direct phage plaques and lambda primers. Plant Mol Biol Reptr 13:138–146

    Article  CAS  Google Scholar 

  7. Erlich HA, Gelfand D, Sninsky JJ (1991) Recent advances in the polymerase chain reaction. Science 252:1643–1651

    Article  PubMed  CAS  Google Scholar 

  8. Rosilawati ML, Yasmon A (2011) Rapid detection of ethambutol-resistant Mycobacterium tuberculosis directly from sputum samples by radioisotope (32P)-based PCR dot blot hybridization and sequencing methods. Acta Med Indones 43:34–38

    PubMed  Google Scholar 

  9. Palatinszky M, Nikolausz M, Sváb D, Márialigeti K (2011) Preferential ligation during TA-cloning of multitemplate PCR products–a factor causing bias in microbial community structure analysis. J Microbiol Methods 85:131–136

    Article  PubMed  CAS  Google Scholar 

  10. Walker A, Taylor J, Rowe D, Summers D (2008) A method for generating sticky-end PCR products which facilitates unidirectional cloning and the one-step assembly of complex DNA constructs. Plasmid 59:155–162

    Article  PubMed  CAS  Google Scholar 

  11. Shaya D, Zhao WJ, Garron ML, Xiao Z, Cui Q, Zhang Z, Sulea T, Linhardt RJ, Cygler M (2010) Mechanism of heparinase II investigated by site-directed mutagenesis and the crystal structure with its substrate. J Biol Chem 285:20051–20061

    Article  PubMed  CAS  Google Scholar 

  12. Mullaney EJ, Locovare H, Sethumadhavan K, Boone S, Lei XG, Ullah AH (2010) Site-directed mutagenesis of disulfide bridges in Aspergillus niger NRRL 3135 phytase (PhyA), their expression in Pichia pastoris and catalytic characterization. Appl Microbiol Biotechnol 87:1367–1372

    Article  PubMed  CAS  Google Scholar 

  13. Simionatto S, Marchioro SB, Galli V, Luerce TD, Hartwig DD, Moreira ÂN, Dellagostin OA (2009) Efficient site-directed mutagenesis using an overlap extension-PCR method for expressing Mycoplasma hyopneumoniae genes in Escherichia coli. J Microbiol Methods 79:101–105

    Article  PubMed  CAS  Google Scholar 

  14. Tian J, Liu Q, Dong S, Qiao X, Ni J (2010) A new method for multi-site-directed mutagenesis. Anal Biochem 406:83–85

    Article  PubMed  CAS  Google Scholar 

  15. Seyfang A, Jin JH (2004) Multiple site-directed mutagenesis of more than 10 sites simultaneously and in a single round. Anal Biochem 324:285–291

    Article  PubMed  CAS  Google Scholar 

  16. Kunkel TA (1985) Rapid and efficient site-specific mutagenesis without phenotypic selection. Proc Natl Acad Sci USA 82:488–492

    Article  PubMed  CAS  Google Scholar 

  17. Vandeyar MA, Weiner MP, Hutton CJ, Batt CA (1988) A simple and rapid method for the selection of oligodeoxynucleotide-directed mutants. Gene 65:129–133

    Article  PubMed  CAS  Google Scholar 

  18. Anderson EM, Halsey WA, Wuttke DS (2003) Site-directed mutagenesis reveals the thermodynamic requirements for single-stranded DNA recognition by the telomere-binding protein Cdc13. Biochemistry 42:3751–3758

    Article  PubMed  CAS  Google Scholar 

  19. US Patent Nos. 6,713,285, 6,391,548, 5,948,663, 5,932,419, 5,789,166, 7,132,265, 7,176,004, 5,286,632 and patents pending

    Google Scholar 

  20. Geiser M, Cèbe R, Drewello D, Schmitz R (2001) Integration of PCR fragments at any specific site within cloning vectors without the use of restriction enzymes and DNA ligase. Biotechniques 31:88–90

    PubMed  CAS  Google Scholar 

  21. van den Ent F, Löwe J (2006) RF cloning: a restriction-free method for inserting target genes into plasmids. J Biochem Biophys Methods 67:67–74

    Article  PubMed  Google Scholar 

  22. Bayram O, Krappmann S, Ni M, Bok JW, Helmstaedt K, Valerius O, Braus-Stromeyer S, Kwon NJ, Keller NP, Yu JH, Braus GH (2008) VelB/VeA/LaeA complex coordinates light signal with fungal development and secondary metabolism. Science 320:1504–1506

    Article  PubMed  CAS  Google Scholar 

  23. US Patent Nos. 7,045,328, 6,734,293, 6,489,150, 6,444,428, 6,183,997, 5,948,663, 5,866,395, 5,545,552 and patents pending

    Google Scholar 

  24. Nelson M, McClelland M (1992) Use of DNA methyltransferase/endonuclease enzyme combinations for megabase mapping of chromosomes. Methods Enzymol 216:279–303

    Article  PubMed  CAS  Google Scholar 

  25. Geier GE, Modrich P (1979) Recognition sequence of the dam methylase of Escherichia coli K12 and mode of cleavage of DpnI endonuclease. J Biol Chem 254:1408–1413

    PubMed  CAS  Google Scholar 

Download references

Acknowledgment

The project was supported by PO1GM084077 from the National Institute of General Medical Sciences to N.P.K.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin Woo Bok .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Bok, J.W., Keller, N.P. (2012). Fast and Easy Method for Construction of Plasmid Vectors Using Modified Quick-Change Mutagenesis. In: Keller, N., Turner, G. (eds) Fungal Secondary Metabolism. Methods in Molecular Biology, vol 944. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-122-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-122-6_11

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-121-9

  • Online ISBN: 978-1-62703-122-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics