Skip to main content

Bifunctional Short Hairpin RNA (bi-shRNA): Design and Pathway to Clinical Application

  • Protocol
  • First Online:
siRNA Design

Part of the book series: Methods in Molecular Biology ((MIMB,volume 942))

Abstract

The discovery of RNA interference (RNAi) engendered great excitement and raised expectations regarding its potential applications in biomedical research and clinical usage. Over the ensuing years, expanded understanding of RNAi and preliminary results from early clinical trials tempered enthusiasm with realistic appraisal resulting in cautious optimism and a better understanding of necessary research and clinical directions. As a result, data from more recent trials are beginning to show encouraging positive clinical outcomes. The capability of delivering a pharmacologically effective dose to the target site while avoiding adverse host reactions still remains a challenge although the delivery technology continues to improve. We have developed a novel vector-driven bifunctional short hairpin RNA (bi-shRNA) technology that harnesses both cleavage-dependent and cleavage-independent RISC loading pathways to enhance knockdown potency. Consequent advantages provided by the bi-shRNA include a lower effective systemic dose than comparator siRNA/shRNA to minimize the potential for off-target side effects, due to its ability to induce both a rapid (inhibition of protein translation) and delayed (mRNA cleavage and degradation) targeting effect depending on protein and mRNA kinetics, and a longer duration of effectiveness for clinical applications. Here, we provide an overview of key molecular methods for the design, construction, quality control, and application of bi-shRNA that we believe will be useful for others interested in utilizing this technology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fire AZ (2007) Gene silencing by double-stranded RNA (Nobel Lecture). Angew Chem Int Ed 46:6966–6984

    Article  CAS  Google Scholar 

  2. Mello CC (2007) Return to the RNAi world: rethinking gene expression and evolution. Cell Death Differ 14:2013–2020

    Article  CAS  Google Scholar 

  3. Burnett JC, Rossi JJ, Tiemann K (2011) Current progress of siRNA/shRNA therapeutics in clinical trials. Biotechnol J 6:1130–1146

    Article  CAS  Google Scholar 

  4. Davidson BL, McCray PB Jr (2011) Current prospects for RNA interference-based therapies. Nat Rev 12:329–340

    Article  CAS  Google Scholar 

  5. Wang Z, Rao DD, Senzer N, Nemunaitis J (2011) RNA interference and cancer therapy. Pharm Res (Epub ahead of print)

    Google Scholar 

  6. Phalon C, Rao DD, Nemunaitis J (2010) Potential use of RNA interference in cancer therapy. Expert Rev Mol Med 12:e26

    Article  Google Scholar 

  7. Drews J (1996) Genomic sciences and the medicine of tomorrow. Nat Biotechnol 14:1516–1518

    Article  CAS  Google Scholar 

  8. Drews J (2000) Drug discovery: a historical perspective. Science 287:1960–1964

    Article  CAS  Google Scholar 

  9. Verdine GL, Walensky LD (2007) The challenge of drugging undruggable targets in cancer: lessons learned from targeting BCL-2 family members. Clin Cancer Res 13:7264–7270

    Article  CAS  Google Scholar 

  10. Matranga C, Tomari Y, Shin C, Bartel DP, Zamore PD (2005) Passenger-strand cleavage facilitates assembly of siRNA into Ago2-containing RNAi enzyme complexes. Cell 123:607–620

    Article  CAS  Google Scholar 

  11. Preall JB, Sontheimer EJ (2005) RNAi: RISC gets loaded. Cell 123:543–545

    Article  CAS  Google Scholar 

  12. Parker JS, Barford D (2006) Argonaute: a scaffold for the function of short regulatory RNAs. Trends Biochem Sci 31:622–630

    Article  CAS  Google Scholar 

  13. Gregory RI, Chendrimada TP, Cooch N, Shiekhattar R (2005) Human RISC couples microRNA biogenesis and posttranscriptional gene silencing. Cell 123:631–640

    Article  CAS  Google Scholar 

  14. Tang G (2005) siRNA and miRNA: an insight into RISCs. Trends Biochem Sci 30:106–114

    Article  CAS  Google Scholar 

  15. Grimson A, Farh KK, Johnston WK, Garrett-Engele P, Lim LP, Bartel DP (2007) MicroRNA targeting specificity in mammals: determinants beyond seed pairing. Mol Cell 27:91–105

    Article  CAS  Google Scholar 

  16. Ameres SL, Martinez J, Schroeder R (2007) Molecular basis for target RNA recognition and cleavage by human RISC. Cell 130:101–112

    Article  CAS  Google Scholar 

  17. Parker JS, Roe SM, Barford D (2006) Molecular mechanism of target RNA transcript recognition by Argonaute-guide complexes. Cold Spring Harb Symp Quant Biol 71:45–50

    Article  CAS  Google Scholar 

  18. Rao DD, Vorhies JS, Senzer N, Nemunaitis J (2009) siRNA vs. shRNA: similarities and differences. Adv Drug Deliv Rev 61:746–759

    Article  CAS  Google Scholar 

  19. Kim DH, Behlke MA, Rose SD, Chang MS, Choi S, Rossi JJ (2005) Synthetic dsRNA Dicer substrates enhance RNAi potency and efficacy. Nat Biotechnol 23:222–226

    Article  CAS  Google Scholar 

  20. McAnuff MA, Rettig GR, Rice KG (2007) Potency of siRNA versus shRNA mediated knockdown in vivo. J Pharm Sci 96:2922–2930

    Article  CAS  Google Scholar 

  21. Rao DD, Maples PB, Senzer N et al (2010) Enhanced target gene knockdown by a bifunctional shRNA: a novel approach of RNA interference. Cancer Gene Ther 17:780–791

    Article  CAS  Google Scholar 

  22. Templeton NS, Lasic DD, Frederik PM, Strey HH, Roberts DD, Improved PGN (1997) DNA: liposome complexes for increased systemic delivery and gene expression. Nat Biotechnol 15:647–652

    Article  CAS  Google Scholar 

  23. Chapman BS, Thayer RM, Vincent KA, Haigwood NL (1991) Effect of intron A from human cytomegalovirus (Towne) immediate-early gene on heterologous expression in mammalian cells. Nucleic Acids Res 19:3979–3986

    Article  CAS  Google Scholar 

  24. Simari RD, Yang ZY, Ling X et al (1998) Requirements for enhanced transgene expression by untranslated sequences from the human cytomegalovirus immediate-early gene. Mol Med (Cambridge, Mass) 4:700–706

    CAS  Google Scholar 

  25. Grimm D, Streetz KL, Jopling CL et al (2006) Fatality in mice due to oversaturation of cellular microRNA/short hairpin RNA pathways. Nature 441:537–541

    Article  CAS  Google Scholar 

  26. Giering JC, Grimm D, Storm TA, Kay MA (2008) Expression of shRNA from a tissue-specific pol II promoter is an effective and safe RNAi therapeutic. Mol Ther 16:1630–1636

    Article  CAS  Google Scholar 

  27. Walton SP, Wu M, Gredell JA, Chan C (2010) Designing highly active siRNAs for therapeutic applications. FEBS J 277:4806–4813

    Article  CAS  Google Scholar 

  28. Hofacker IL, Tafer H (2010) Designing optimal siRNA based on target site accessibility. Methods Mol Biol 623:137–154

    Article  CAS  Google Scholar 

  29. Moore CB, Guthrie EH, Huang MT, Taxman DJ (2010) Short hairpin RNA (shRNA): design, delivery, and assessment of gene knockdown. Methods Mol Biol 629:141–158

    Google Scholar 

  30. Dawson LA, Usmani BA (2008) Design, manufacture, and assay of the efficacy of siRNAs for gene silencing. Methods Mol Biol 439:403–419

    Article  CAS  Google Scholar 

  31. Zeng Y, Cullen BR (2006) Recognition and cleavage of primary microRNA transcripts. Methods Mol Biol 342:49–56

    CAS  Google Scholar 

  32. Siolas D, Lerner C, Burchard J et al (2005) Synthetic shRNAs as potent RNAi triggers. Nat Biotechnol 23:227–231

    Article  CAS  Google Scholar 

  33. Barteau B, Chevre R, Letrou-Bonneval E, Labas R, Lambert O, Pitard B (2008) Physicochemical parameters of non-viral vectors that govern transfection efficiency. Curr Gene Ther 8:313–323

    Article  CAS  Google Scholar 

  34. Chesnoy S, Huang L (2000) Structure and function of lipid–DNA complexes for gene delivery. Annu Rev Biophys Biomol Struct 29:27–47

    Article  CAS  Google Scholar 

  35. Templeton NS (2010) Liposomes for gene transfer in cancer therapy. Methods Mol Biol 651:271–278

    Article  CAS  Google Scholar 

  36. Phadke AP, Jay CM, Wang Z et al (2011) In vivo safety and antitumor efficacy of bifunctional small hairpin RNAs specific for the human Stathmin 1 oncoprotein. DNA Cell Biol 30:715–726

    Article  CAS  Google Scholar 

  37. Nemunaitis G, Jay CM, Maples PB et al (2011) Hereditary inclusion body myopathy: single patient response to intravenous dosing of GNE gene lipoplex. Hum Gene Ther (Epub ahead of print)

    Google Scholar 

  38. Firozi P, Zhang W, Chen L, Quiocho FA, Worley KC, Templeton NS (2010) Identification and removal of colanic acid from plasmid DNA preparations: implications for gene therapy. Gene Ther 17:1484–1499

    Article  CAS  Google Scholar 

  39. Chen C, Ridzon DA, Broomer AJ et al (2005) Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res 33:e179

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the generous support of the W.W. Caruth Jr. Foundation Fund of the Communities Foundation of Texas, the Jasper L. and Jack Denton Wilson Foundation, and the Marilyn Augur Family Foundation. They also wish to thank Susan W. Mill for her assistance in manuscript preparation and submission.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Nemunaitis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Rao, D.D., Senzer, N., Wang, Z., Kumar, P., Jay, C.M., Nemunaitis, J. (2013). Bifunctional Short Hairpin RNA (bi-shRNA): Design and Pathway to Clinical Application. In: Taxman, D. (eds) siRNA Design. Methods in Molecular Biology, vol 942. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-119-6_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-119-6_14

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-118-9

  • Online ISBN: 978-1-62703-119-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics