Skip to main content
Book cover

siRNA Design pp 233–257Cite as

Design of Lentivirally Expressed siRNAs

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 942))

Abstract

RNA interference (RNAi) has been widely used as a tool for gene knockdown in fundamental research and for the development of new RNA-based therapeutics. The RNAi pathway is typically induced by expression of ∼22 base pair (bp) small interfering RNAs (siRNAs), which can be transfected into cells. For long-term gene silencing, short hairpin RNA (shRNA), or artificial microRNA (amiRNA) expression constructs have been developed that produce these RNAi inducers inside the cell. Currently, these types of constructs are broadly applied to knock down any gene of interest. Besides mono RNAi strategies that involve single shRNAs or amiRNAs, combinatorial RNAi approaches have been developed that allow the simultaneous expression of multiple siRNAs or amiRNAs by using polycistrons, extended shRNAs (e-shRNAs), or long hairpin RNAs (lhRNAs). Here, we provide practical information for the construction of single shRNA or amiRNA vectors, but also multi-shRNA/amiRNA constructs. Furthermore, we summarize the advantages and limitations of the most commonly used viral vectors for the expression of RNAi inducers.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Waterhouse PM, Wang MB, Lough T (2001) Gene silencing as an adaptive defence against viruses. Nature 411:834–842

    Article  CAS  Google Scholar 

  2. Voinnet O (2001) RNA silencing as a plant immune system against viruses. Trends Genet 17:449–459

    Article  CAS  Google Scholar 

  3. Wilkins C, Dishongh R, Moore SC, Whitt MA, Chow M, Machaca K (2005) RNA interference is an antiviral defence mechanism in Caenorhabditis elegans. Nature 436:1044–1047

    Article  CAS  Google Scholar 

  4. Wang XH, Aliyari R, Li WX et al (2006) RNA interference directs innate immunity against viruses in adult Drosophila. Science 312:452–454

    Article  CAS  Google Scholar 

  5. Segers GC, Zhang X, Deng F, Sun Q, Nuss DL (2007) Evidence that RNA silencing functions as an antiviral defense mechanism in fungi. Proc Natl Acad Sci U S A 104:12902–12906

    Article  CAS  Google Scholar 

  6. Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391:806–811

    Article  CAS  Google Scholar 

  7. Ghildiyal M, Seitz H, Horwich MD et al (2008) Endogenous siRNAs derived from transposons and mRNAs in Drosophila somatic cells. Science 320:1077–1081

    Article  CAS  Google Scholar 

  8. Sijen T, Plasterk RH (2003) Transposon silencing in the Caenorhabditis elegans germ line by natural RNAi. Nature 426:310–314

    Article  CAS  Google Scholar 

  9. Malone CD, Hannon GJ (2009) Small RNAs as guardians of the genome. Cell 136:656–668

    Article  CAS  Google Scholar 

  10. Yang N, Kazazian HH Jr (2006) L1 retrotransposition is suppressed by endogenously encoded small interfering RNAs in human cultured cells. Nat Struct Mol Biol 13:763–771

    Article  CAS  Google Scholar 

  11. Bernstein E, Caudy AA, Hammond SM, Hannon GJ (2001) Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 409:363–366

    Article  CAS  Google Scholar 

  12. Nykanen A, Haley B, Zamore PD (2001) ATP requirements and small interfering RNA structure in the RNA interference pathway. Cell 107:309–321

    Article  CAS  Google Scholar 

  13. Zamore PD, Tuschl T, Sharp PA, Bartel DP (2000) RNAi: double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell 101:25–33

    Article  CAS  Google Scholar 

  14. Elbashir SM, Lendeckel W, Tuschl T (2001) RNA interference is mediated by 21- and 22-nucleotide RNAs. Genes Dev 15:188–200

    Article  CAS  Google Scholar 

  15. Haase AD, Jaskiewicz L, Zhang H et al (2005) TRBP, a regulator of cellular PKR and HIV-1 virus expression, interacts with Dicer and functions in RNA silencing. EMBO Rep 6:961–967

    Article  CAS  Google Scholar 

  16. Zhang H, Kolb FA, Brondani V, Billy E, Filipowicz W (2002) Human Dicer preferentially cleaves dsRNAs at their termini without a requirement for ATP. EMBO J 21:5875–5885

    Article  CAS  Google Scholar 

  17. Leuschner PJ, Ameres SL, Kueng S, Martinez J (2006) Cleavage of the siRNA passenger strand during RISC assembly in human cells. EMBO Rep 7:314–320

    Article  CAS  Google Scholar 

  18. Matranga C, Tomari Y, Shin C, Bartel DP, Zamore PD (2005) Passenger-strand cleavage facilitates assembly of siRNA into Ago2-containing RNAi enzyme complexes. Cell 123:607–620

    Article  CAS  Google Scholar 

  19. Rand TA, Petersen S, Du F, Wang X (2005) Argonaute2 cleaves the anti-guide strand of siRNA during RISC activation. Cell 123:621–629

    Article  CAS  Google Scholar 

  20. Hammond SM, Caudy AA, Hannon GJ (2001) Post-transcriptional gene silencing by double-stranded RNA. Nat Rev Genet 2:110–119

    Article  CAS  Google Scholar 

  21. Umbach JL, Cullen BR (2009) The role of RNAi and microRNAs in animal virus replication and antiviral immunity. Genes Dev 23:1151–1164

    Article  CAS  Google Scholar 

  22. Cullen BR (2006) Is RNA interference involved in intrinsic antiviral immunity in mammals? Nat Immunol 7:563–567

    Article  CAS  Google Scholar 

  23. Berkhout B, Jeang KT (2007) RISCy business: microRNAs, pathogenesis, and viruses. J Biol Chem 282:26641–26645

    Article  CAS  Google Scholar 

  24. Haasnoot J, Westerhout EM, Berkhout B (2007) RNA interference against viruses: strike and counterstrike. Nat Biotechnol 25:1435–1443

    Article  CAS  Google Scholar 

  25. Han J, Lee Y, Yeom KH, Kim YK, Jin H, Kim VN (2004) The Drosha-DGCR8 complex in primary microRNA processing. Genes Dev 18:3016–3027

    Article  CAS  Google Scholar 

  26. Bohnsack MT, Czaplinski K, Gorlich D (2004) Exportin 5 is a RanGTP-dependent dsRNA-binding protein that mediates nuclear export of pre-miRNAs. RNA 10:185–191

    Article  CAS  Google Scholar 

  27. Lund E, Guttinger S, Calado A, Dahlberg JE, Kutay U (2004) Nuclear export of microRNA precursors. Science 303:95–98

    Article  CAS  Google Scholar 

  28. Yi R, Qin Y, Macara IG, Cullen BR (2003) Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev 17:3011–3016

    Article  CAS  Google Scholar 

  29. Chendrimada TP, Gregory RI, Kumaraswamy E et al (2005) TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing. Nature 436:740–744

    Article  CAS  Google Scholar 

  30. Hutvagner G, McLachlan J, Pasquinelli AE, Balint E, Tuschl T, Zamore PD (2001) A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA. Science 293:834–838

    Article  CAS  Google Scholar 

  31. Mourelatos Z, Dostie J, Paushkin S et al (2002) miRNPs: a novel class of ribonucleoproteins containing numerous microRNAs. Genes Dev 16:720–728

    Article  CAS  Google Scholar 

  32. Brennecke J, Stark A, Russell RB, Cohen SM (2005) Principles of microRNA-target recognition. PLoS Biol 3:e85

    Article  CAS  Google Scholar 

  33. Grimson A, Farh KK, Johnston WK, Garrett-Engele P, Lim LP, Bartel DP (2007) MicroRNA targeting specificity in mammals: determinants beyond seed pairing. Mol Cell 27:91–105

    Article  CAS  Google Scholar 

  34. Yekta S, Shih IH, Bartel DP (2004) MicroRNA-directed cleavage of HOXB8 mRNA. Science 304:594–596

    Article  CAS  Google Scholar 

  35. Krek A, Grun D, Poy MN et al (2005) Combinatorial microRNA target predictions. Nat Genet 37:495–500

    Article  CAS  Google Scholar 

  36. Lewis BP, Shih IH, Jones-Rhoades MW, Bartel DP, Burge CB (2003) Prediction of mammalian microRNA targets. Cell 115:787–798

    Article  CAS  Google Scholar 

  37. Liu J, Valencia-Sanchez MA, Hannon GJ, Parker R (2005) MicroRNA-dependent localization of targeted mRNAs to mammalian P-bodies. Nat Cell Biol 7:719–723

    Article  CAS  Google Scholar 

  38. Sen GL, Blau HM (2005) Argonaute 2/RISC resides in sites of mammalian mRNA decay known as cytoplasmic bodies. Nat Cell Biol 7:633–636

    Article  CAS  Google Scholar 

  39. Kim DH, Rossi JJ (2007) Strategies for silencing human disease using RNA interference. Nat Rev Genet 8:173–184

    Article  CAS  Google Scholar 

  40. Brummelkamp TR, Bernards R, Agami R (2002) A system for stable expression of short interfering RNAs in mammalian cells. Science 296:550–553

    Article  CAS  Google Scholar 

  41. Paddison PJ, Caudy AA, Bernstein E, Hannon GJ, Conklin DS (2002) Short hairpin RNAs (shRNAs) induce sequence-specific silencing in mammalian cells. Genes Dev 16:948–958

    Article  CAS  Google Scholar 

  42. Siolas D, Lerner C, Burchard J et al (2005) Synthetic shRNAs as potent RNAi triggers. Nat Biotechnol 23:227–231

    Article  CAS  Google Scholar 

  43. Kawasaki H, Taira K (2003) Short hairpin type of dsRNAs that are controlled by tRNA(Val) promoter significantly induce RNAi-mediated gene silencing in the cytoplasm of human cells. Nucleic Acids Res 31:700–707

    Article  CAS  Google Scholar 

  44. Lee Y, Kim M, Han J et al (2004) MicroRNA genes are transcribed by RNA polymerase II. EMBO J 23:4051–4060

    Article  CAS  Google Scholar 

  45. van de Wetering M, Oving I, Muncan V et al (2003) Specific inhibition of gene expression using a stably integrated, inducible small-interfering-RNA vector. EMBO Rep 4:609–615

    Article  CAS  Google Scholar 

  46. Gupta S, Schoer RA, Egan JE, Hannon GJ, Mittal V (2004) Inducible, reversible, and stable RNA interference in mammalian cells. Proc Natl Acad Sci U S A 101:1927–1932

    Article  CAS  Google Scholar 

  47. Liu YP, Haasnoot J, Berkhout B (2007) Design of extended short hairpin RNAs for HIV-1 inhibition. Nucleic Acids Res 35:5683–5693

    Article  CAS  Google Scholar 

  48. Liu YP, von Eije KJ, Schopman NC et al (2009) Combinatorial RNAi against HIV-1 using extended short hairpin RNAs. Mol Ther 17:1712–1723

    Article  CAS  Google Scholar 

  49. Weinberg MS, Ely A, Barichievy S et al (2007) Specific inhibition of HBV replication in vitro and in vivo with expressed long hairpin RNA. Mol Ther 15:534–541

    Article  CAS  Google Scholar 

  50. Saayman S, Barichievy S, Capovilla A, Morris KV, Arbuthnot P, Weinberg MS (2008) The efficacy of generating three independent anti-HIV-1 siRNAs from a single U6 RNA Pol III-expressed long hairpin RNA. PLoS One 3:e2602

    Article  CAS  Google Scholar 

  51. Sano M, Li H, Nakanishi M, Rossi JJ (2008) Expression of long anti-HIV-1 hairpin RNAs for the generation of multiple siRNAs: advantages and limitations. Mol Ther 16:170–177

    Article  CAS  Google Scholar 

  52. Wu Z, Asokan A, Samulski RJ (2006) Adeno-associated virus serotypes: vector toolkit for human gene therapy. Mol Ther 14:316–327

    Article  CAS  Google Scholar 

  53. Kotin RM, Siniscalco M, Samulski RJ et al (1990) Site-specific integration by adeno-associated virus. Proc Natl Acad Sci U S A 87:2211–2215

    Article  CAS  Google Scholar 

  54. Nakai H, Montini E, Fuess S, Storm TA, Grompe M, Kay MA (2003) AAV serotype 2 vectors preferentially integrate into active genes in mice. Nat Genet 34:297–302

    Article  CAS  Google Scholar 

  55. Russell DW (2003) AAV loves an active genome. Nat Genet 34:241–242

    Article  CAS  Google Scholar 

  56. Smith RH (2008) Adeno-associated virus integration: virus versus vector. Gene Ther 15:817–822

    Article  CAS  Google Scholar 

  57. Donsante A, Miller DG, Li Y et al (2007) AAV vector integration sites in mouse hepatocellular carcinoma. Science 317:477

    Article  CAS  Google Scholar 

  58. Cao H, Koehler DR, Hu J (2004) Adenoviral vectors for gene replacement therapy. Viral Immunol 17:327–333

    Article  CAS  Google Scholar 

  59. Buchbinder SP, Mehrotra DV, Duerr A et al (2008) Efficacy assessment of a cell-mediated immunity HIV-1 vaccine (the Step Study): a double-blind, randomised, placebo-controlled, test-of-concept trial. Lancet 372:1881–1893

    Article  CAS  Google Scholar 

  60. McElrath MJ, De Rosa SC, Moodie Z et al (2008) HIV-1 vaccine-induced immunity in the test-of-concept Step Study: a case-cohort analysis. Lancet 372:1894–1905

    Article  CAS  Google Scholar 

  61. O’Brien KL, Liu J, King SL et al (2009) Adenovirus-specific immunity after immunization with an Ad5 HIV-1 vaccine candidate in humans. Nat Med 15:873–875

    Article  CAS  Google Scholar 

  62. Lasaro MO, Ertl HC (2009) New insights on adenovirus as vaccine vectors. Mol Ther 17:1333–1339

    Article  CAS  Google Scholar 

  63. Hartman ZC, Appledorn DM, Amalfitano A (2008) Adenovirus vector induced innate immune responses: impact upon efficacy and toxicity in gene therapy and vaccine applications. Virus Res 132:1–14

    Article  CAS  Google Scholar 

  64. Baum C, Schambach A, Bohne J, Galla M (2006) Retrovirus vectors: toward the plentivirus? Mol Ther 13:1050–1063

    Article  CAS  Google Scholar 

  65. Hacein-Bey-Abina S, Garrigue A, Wang GP et al (2008) Insertional oncogenesis in 4 patients after retrovirus-mediated gene therapy of SCID-X1. J Clin Invest 118:3132–3142

    Article  CAS  Google Scholar 

  66. Mohamedali A, Moreau-Gaudry F, Richard E, Xia P, Nolta J, Malik P (2004) Self-inactivating lentiviral vectors resist proviral methylation but do not confer position-independent expression in hematopoietic stem cells. Mol Ther 10:249–259

    Article  CAS  Google Scholar 

  67. Ellis J (2005) Silencing and variegation of gammaretrovirus and lentivirus vectors. Hum Gene Ther 16:1241–1246

    Article  CAS  Google Scholar 

  68. Buchschacher GL Jr, Wong-Staal F (2000) Development of lentiviral vectors for gene therapy for human diseases. Blood 95:2499–2504

    CAS  Google Scholar 

  69. Laufs S, Guenechea G, Gonzalez-Murillo A et al (2006) Lentiviral vector integration sites in human NOD/SCID repopulating cells. J Gene Med 8:1197–1207

    Article  CAS  Google Scholar 

  70. Montini E, Cesana D, Schmidt M et al (2006) Hematopoietic stem cell gene transfer in a tumor-prone mouse model uncovers low genotoxicity of lentiviral vector integration. Nat Biotechnol 24:687–696

    Article  CAS  Google Scholar 

  71. Montini E, Cesana D, Schmidt M et al (2009) The genotoxic potential of retroviral vectors is strongly modulated by vector design and integration site selection in a mouse model of HSC gene therapy. J Clin Invest 119:964–975

    Article  CAS  Google Scholar 

  72. Lois C, Hong EJ, Pease S, Brown EJ, Baltimore D (2002) Germline transmission and tissue-specific expression of transgenes delivered by lentiviral vectors. Science 295:868–872

    Article  CAS  Google Scholar 

  73. Pfeifer A (2004) Lentiviral transgenesis. Transgenic Res 13:513–522

    Article  CAS  Google Scholar 

  74. Grimm D (2009) Small silencing RNAs: state-of-the-art. Adv Drug Deliv Rev 61:672–703

    Article  CAS  Google Scholar 

  75. Grimm D, Kay MA (2007) RNAi and gene therapy: a mutual attraction. Hematol Am Soc Hematol Educ Program 1:473–481

    Google Scholar 

  76. Mowa MB, Crowther C, Arbuthnot P (2010) Therapeutic potential of adenoviral vectors for delivery of expressed RNAi activators. Expert Opin Drug Deliv 7:1373–1385

    Article  CAS  Google Scholar 

  77. Raoul C, Barker SD, Aebischer P (2006) Viral-based modelling and correction of neurodegenerative diseases by RNA interference. Gene Ther 13:487–495

    Article  CAS  Google Scholar 

  78. Stewart SA, Dykxhoorn DM, Palliser D et al (2003) Lentivirus-delivered stable gene silencing by RNAi in primary cells. RNA 9:493–501

    Article  CAS  Google Scholar 

  79. Chen J, Wall NR, Kocher K et al (2004) Stable expression of small interfering RNA sensitizes TEL-PDGFbetaR to inhibition with imatinib or rapamycin. J Clin Invest 113:1784–1791

    CAS  Google Scholar 

  80. Brummelkamp TR, Bernards R, Agami R (2002) Stable suppression of tumorigenicity by virus-mediated RNA interference. Cancer Cell 2:243–247

    Article  CAS  Google Scholar 

  81. Liu YP, Berkhout B (2009) Lentiviral delivery of RNAi effectors against HIV-1. Curr Top Med Chem 9:1130–1143

    Article  CAS  Google Scholar 

  82. Manjunath N, Wu H, Subramanya S, Shankar P (2009) Lentiviral delivery of short hairpin RNAs. Adv Drug Deliv Rev 61:732–745

    Article  CAS  Google Scholar 

  83. Seppen J, Rijnberg M, Cooreman MP, Oude Elferink RP (2002) Lentiviral vectors for efficient transduction of isolated primary quiescent hepatocytes. J Hepatol 36:459–465

    Article  CAS  Google Scholar 

  84. Liu YP, Haasnoot J, Ter Brake O, Berkhout B, Konstantinova P (2008) Inhibition of HIV-1 by multiple siRNAs expressed from a single microRNA polycistron. Nucleic Acids Res 36:2811–2824

    Article  CAS  Google Scholar 

  85. Kotsopoulou E, Kim VN, Kingsman AJ, Kingsman SM, Mitrophanous KA (2000) A Rev-independent human immunodeficiency virus type 1 (HIV-1)-based vector that exploits a codon-optimized HIV-1 gag-pol gene. J Virol 74:4839–4852

    Article  CAS  Google Scholar 

  86. Dull T, Zufferey R, Kelly M et al (1998) A third-generation lentivirus vector with a conditional packaging system. J Virol 72:8463–8471

    CAS  Google Scholar 

  87. Ter Brake O, Konstantinova P, Ceylan M, Berkhout B (2006) Silencing of HIV-1 with RNA interference: a multiple shRNA approach. Mol Ther 14:883–892

    Article  CAS  Google Scholar 

  88. Jeeninga RE, Hoogenkamp M, Armand-Ugon M, de Baar M, Verhoef K, Berkhout B (2000) Functional differences between the long terminal repeat transcriptional promoters of HIV-1 subtypes A through G. J Virol 74:3740–3751

    Article  CAS  Google Scholar 

  89. Schopman NC, Liu YP, Konstantinova P, Ter Brake O, Berkhout B (2010) Optimization of shRNA inhibitors by variation of the terminal loop sequence. Antiviral Res 86:204–211

    Article  CAS  Google Scholar 

  90. Yu JY, DeRuiter SL, Turner DL (2002) RNA interference by expression of short-interfering RNAs and hairpin RNAs in mammalian cells. Proc Natl Acad Sci U S A 99:6047–6052

    Article  CAS  Google Scholar 

  91. Koper-Emde D, Herrmann L, Sandrock B, Benecke BJ (2004) RNA interference by small hairpin RNAs synthesised under control of the human 7S K RNA promoter. Biol Chem 385:791–794

    Article  CAS  Google Scholar 

  92. Denti MA, Rosa A, Sthandier O, De Angelis FG, Bozzoni I (2004) A new vector, based on the PolII promoter of the U1 snRNA gene, for the expression of siRNAs in mammalian cells. Mol Ther 10:191–199

    Article  CAS  Google Scholar 

  93. Ter Brake O, ‘tHooft K, Liu YP, Centlivre M, von Eije KJ, Berkhout B (2008) Lentiviral vector design for multiple shRNA expression and durable HIV-1 inhibition. Mol Ther 16:557–564

    Article  CAS  Google Scholar 

  94. Haqqi T, Zhao X, Panciu A, Yadav SP (2002) Sequencing in the presence of Betaine: improvement in sequencing of the localized repeat sequence regions. J Biomol Tech 13:265–271

    CAS  Google Scholar 

  95. Liu YP, Vink MA, Westerink JT et al (2010) Titers of lentiviral vectors encoding shRNAs and miRNAs are reduced by different mechanisms that require distinct repair strategies. RNA 16:1328–1339

    Article  CAS  Google Scholar 

  96. Andersson MG, Haasnoot PCJ, Xu N, Berenjian S, Berkhout B, Akusjarvi G (2005) Suppression of RNA interference by adenovirus virus-associated RNA. J Virol 79:9556–9565

    Article  CAS  Google Scholar 

  97. de Vries W, Haasnoot J, van der Velden J et al (2008) Increased virus replication in mammalian cells by blocking intracellular innate defense responses. Gene Ther 15:545–552

    Article  CAS  Google Scholar 

  98. Haasnoot J, de Vries W, Geutjes EJ, Prins M, de Haan P, Berkhout B (2007) The Ebola virus VP35 protein is a suppressor of RNA silencing. PLoS Pathog 3:e86

    Article  CAS  Google Scholar 

  99. Popa I, Harris ME, Donello JE, Hope TJ (2002) CRM1-dependent function of a cis-acting RNA export element. Mol Cell Biol 22:2057–2067

    Article  CAS  Google Scholar 

  100. Higashikawa F, Chang L (2001) Kinetic analyses of stability of simple and complex retroviral vectors. Virol 280:124–131

    Article  CAS  Google Scholar 

  101. Kwon YJ, Hung G, Anderson WF, Peng CA, Yu H (2003) Determination of infectious retrovirus concentration from colony-forming assay with quantitative analysis. J Virol 77:5712–5720

    Article  CAS  Google Scholar 

  102. Sastry L, Johnson T, Hobson MJ, Smucker B, Cornetta K (2002) Titering lentiviral vectors: comparison of DNA, RNA and marker expression methods. Gene Ther 9:1155–1162

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank all the members of the RNAi group for stimulating discussions and useful suggestions. RNAi research in the Berkhout laboratory is sponsored by NWO-CW (Top grant) and ZonMw (Translational Gene Therapy program).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying Poi Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Liu, Y.P., Berkhout, B. (2013). Design of Lentivirally Expressed siRNAs. In: Taxman, D. (eds) siRNA Design. Methods in Molecular Biology, vol 942. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-119-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-119-6_13

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-118-9

  • Online ISBN: 978-1-62703-119-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics