Skip to main content

Improved Vectors for Selection of Transgenic Caenorhabditis elegans

  • Protocol
  • First Online:
Biolistic DNA Delivery

Part of the book series: Methods in Molecular Biology ((MIMB,volume 940))

Abstract

The generation of transgenic animals is an essential part of research in Caenorhabditis elegans. One technique for the generation of these animals is biolistic bombardment involving the use of DNA-coated microparticles. To facilitate the identification of transgenic animals within a background of non-transformed animals, the unc-119 gene is often used as a visible marker as the unc-119 mutants are small and move poorly and the larger size and smoother movement of rescued animals make them clearly visible. While transgenic animals can be identified from co-bombardment with a transgene of interest and a separate unc-119 rescue plasmid, placing the unc-119 in cis on the transgene increases confidence that the resulting transgenic animals contain and express both the marker and the transgene. However, placing the unc-119 marker on the backbone of a plasmid or larger DNA construct, such as a fosmid or BAC, can be technically difficult using standard molecular biology techniques. Here we describe methods to circumvent these limitations and use either homologous recombination or Cre-LoxP mediated recombination in Escherichia coli to insert the unc-119 marker on to a variety of vector backbones.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mello C, Fire A (1995) DNA transformation. Methods Cell Biol 48:451–482

    Article  PubMed  CAS  Google Scholar 

  2. Evans TC (2006) Transformation and microinjection. In: WormBook (ed) The C. elegans research community, WormBook. doi/ 10.1895/wormbook.1.108.1.

    Google Scholar 

  3. Praitis V et al (2001) Creation of low-copy integrated transgenic lines in Caenorhabditis elegans. Genetics 157:1217–1226

    PubMed  CAS  Google Scholar 

  4. Maduro M, Pilgrim D (1995) Identification and cloning of unc-119, a gene expressed in the Caenorhabditis elegans nervous system. Genetics 141:977–988

    PubMed  CAS  Google Scholar 

  5. Ferguson AA, Fisher AL (2009) Retrofitting ampicillin resistant vectors by recombination for use in generating C. elegans transgenic animals by bombardment. Plasmid 62:140–145

    Article  PubMed  CAS  Google Scholar 

  6. Zhang Y, Nash L, Fisher AL (2008) A simplified, robust, and streamlined procedure for the production of C. elegans transgenes via recombineering. BMC Dev Biol 8:119

    Article  PubMed  Google Scholar 

  7. Fisher AL et al (2008) The Caenorhabditis elegans K10C2.4 gene encodes a member of the fumarylacetoacetate hydrolase family: a Caenorhabditis elegans model of type I tyrosinemia. J Biol Chem 283:9127–9135

    Article  PubMed  CAS  Google Scholar 

  8. Ferguson AA, Springer MG, Fisher AL (2010) skn-1-Dependent and -independent regulation of aip-1 expression following metabolic stress in Caenorhabditis elegans. Mol Cell Biol 30:2651–2667

    Article  PubMed  CAS  Google Scholar 

  9. Datsenko KA, Wanner BL (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A 97:6640–6645

    Article  PubMed  CAS  Google Scholar 

  10. Warming S et al (2005) Simple and highly efficient BAC recombineering using galK selection. Nucleic Acids Res 33:e36

    Article  PubMed  Google Scholar 

  11. Thomason LC et al (2007) Multicopy plasmid modification with phage lambda Red recombineering. Plasmid 58:148–158

    Article  PubMed  CAS  Google Scholar 

  12. Tursun B et al (2009) A toolkit and robust pipeline for the generation of fosmid-based reporter genes in C. elegans. PLoS One 4:e4625

    Article  PubMed  Google Scholar 

  13. Sarov M et al (2006) A recombineering pipeline for functional genomics applied to Caenorhabditis elegans. Nat Methods 3:839–844

    Article  PubMed  CAS  Google Scholar 

  14. Dolphin CT, Hope IA (2006) Caenorhabditis elegans reporter fusion genes generated by seamless modification of large genomic DNA clones. Nucleic Acids Res 34:e72

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alfred L. Fisher .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Ferguson, A.A., Cai, L., Kashyap, L., Fisher, A.L. (2013). Improved Vectors for Selection of Transgenic Caenorhabditis elegans . In: Sudowe, S., Reske-Kunz, A. (eds) Biolistic DNA Delivery. Methods in Molecular Biology, vol 940. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-110-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-110-3_8

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-109-7

  • Online ISBN: 978-1-62703-110-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics