Skip to main content

Stressful Experiences in Early Life and Subsequent Food Intake

  • Protocol
  • First Online:
Animal Models of Eating Disorders

Part of the book series: Neuromethods ((NM,volume 74))

  • 1004 Accesses

Abstract

A number of studies have indicated a strong correlation between traumatic events during early life and the development of behavioral abnormalities later in life, including psychoemotional disorders such as anxiety and depression. Patients with eating disorders frequently exhibit symptoms of depression and/or anxiety, as well as reporting experiences of childhood abuse, a type of early-life trauma. Dysfunction of the hypothalamic-pituitary-adrenal (HPA) axis is implicated in the pathophysiology not only of anxiety and depression, but also of eating disorders. Neonatal maternal separation and isolation rearing in rodents are well-known animal models of stressful experiences in early life. Many studies have demonstrated their impacts both on the activity of the HPA axis and on the development of psychoemotional disorders later in life. This chapter reviews research using animal models of eating disorders associated with stress in early life. Results suggest that neonatal maternal separation leads to the development of binge-related eating disorders when it is challenged with social or metabolic stressors later in life, in which dysfunctions in the HPA axis and the brain monoaminergic systems may play important roles. Also, social isolation in adolescence induces hyperphagia and depression-like behaviors in female rats, but not in males; a tonic increase of plasma corticosterone seems to be implicated in its underlying mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Plotsky PM, Meaney MJ (1993) Early, postnatal experience alters hypothalamic corticotrophin-releasing factor (CRF) mRNA, median eminence CRF content and stress-induced release in adult rats. Mol Brain Res 18:195–200

    Article  PubMed  CAS  Google Scholar 

  2. Ladd CO, Owens MJ, Nemeroff CB (1996) Persistant changes in corticotropin-releasing factor neuronal systems induced by maternal deprivation. Endocrinology 137:1212–1218

    Article  PubMed  CAS  Google Scholar 

  3. Suchecki D, Tufik S (1997) Long-term effects of maternal deprivation on the corticosterone response to stress in rats. Am J Physiol 273:R1332–R1338

    PubMed  CAS  Google Scholar 

  4. Van Oers HJ, de Kloet ER, Levins S (1998) Early vs. late maternal deprivation differentially alters the endocrine and hypothalamic responses to stress. Brain Res Dev Brain Res 111:245–252

    Article  PubMed  Google Scholar 

  5. Liu D et al (2000) Influence of neonatal rearing conditions on stress-induced adrenocorticotropin responses and norepinepherine release in the hypothalamic paraventricular nucleus. J Neuroendocrinol 12:5–12

    Article  PubMed  Google Scholar 

  6. Vazquez DM et al (2000) Maternal deprivation regulates serotonin 1A and 2A receptors in the infant rat. Brain Res 855:76–82

    Article  PubMed  CAS  Google Scholar 

  7. Ladd CO et al (2000) Long-term behavioral and neuroendocrine adaptations to adverse early experience. Prog Brain Res 122:81–103

    Article  PubMed  CAS  Google Scholar 

  8. Khoury AE et al (2006) Adult life behavioral consequences of early maternal separation are alleviated by escitalopram treatment in a rat model of depression. Prog Neuropsycho­pharmacol Biol Psychiatry 30:535–540

    Article  PubMed  CAS  Google Scholar 

  9. Kalinichev M et al (2002) Long-lasting changes in stress-induced corticosterone response and anxiety-like behaviors as a consequence of neonatal maternal separation in Long-Evans rats. Pharm Biochem Behav 73:131–140

    Article  CAS  Google Scholar 

  10. Daniels WM et al (2004) Maternal separation in rats lead to anxiety-like behavior and a blunted ACTH response and altered neurotransmitter levels in response to a Subsequent stressor. Metab Brain Dis 19:3–14

    Article  PubMed  CAS  Google Scholar 

  11. Kendler KS et al (1992) Childhood parental loss and adult psychopathology in women. A twin study perspective. Arch Gen Psychiatry 49:109–116

    Article  PubMed  CAS  Google Scholar 

  12. Furukawa TA et al (1999) Early parental separation experiences among patients with bipolar and major depression: a case-control study. J Affect Dis 52:85–91

    Article  PubMed  CAS  Google Scholar 

  13. Heim C et al (2000) Pituitary-adrenal and autonomic responses to stress in women after sexual and physical abuse in childhood. JAMA 284:593–597

    Article  Google Scholar 

  14. Heim C et al (2001) Altered pituitary-adrenal axis responses to provocative challenge tests in adult survivors of childhood abuse. Am J Psychiatry 158:575–581

    Article  PubMed  CAS  Google Scholar 

  15. Wonderlich SA et al (1997) The relationship of childhood sexual abuse and eating disorders: a review. J Am Acad Child Adolesc Psychiatry 36:1107–1115

    Article  PubMed  CAS  Google Scholar 

  16. Arborelius L et al (1999) The role of corticotropin-releasing factor in depression and anxiety disorders. J Endocrinol 160:1–12

    Article  PubMed  CAS  Google Scholar 

  17. Newport JD, Stowe ZN, Nemeroff CB (2002) Parental depression: animal models of an adverse life event. Am J Psychiatry 159:1265–1283

    Article  PubMed  Google Scholar 

  18. Holsboer F, Barden N (1996) Antidepressants and hypothalamic-pituitary-adrenocortical regulation. Endocr Rev 17:187–205

    PubMed  CAS  Google Scholar 

  19. Koo-Loeb JH et al (2000) Women with eating disorder tendencies display altered cardiovascular, neuroendocrine, and physiological profiles. Psychosom Med 62:539–548

    PubMed  CAS  Google Scholar 

  20. Putignano P et al (2001) Salivary cortisol measurement in normal-weight, obese and anorexic women: comparison with plasma cortisol. Eur J Endocrinol 145:165–171

    Article  PubMed  CAS  Google Scholar 

  21. Gluck ME, Geliebter A, Lorence M (2004) Cortisol stress response is positively correlated with central obesity in obese women with binge eating disorder (BED) before and after cognitive-behavioral treatment. Ann NY Acad Sci 1032:202–207

    Article  PubMed  CAS  Google Scholar 

  22. Hofer MA (1994) Early relationships as regulators of infant physiology and behavior. Acta Paediatr Suppl 397:9–18

    Article  PubMed  CAS  Google Scholar 

  23. Fallon BA et al (1994) Childhood abuse, family environment, and outcome in bulimia nervosa. J Clin Psychiatry 55:424–428

    PubMed  CAS  Google Scholar 

  24. McCarthy MK et al (1994) Dissociation, childhood trauma, and the response to fluoxetine in bulimic patients. Int J Eat Disord 15:219–226

    Article  PubMed  CAS  Google Scholar 

  25. Rorty M, Yager J, Rossotto E (1994) Childhood sexual, physical, and psychological abuse and their relationship to comorbid psychopathology in bulimia nervosa. Int J Eat Disord 16:317–334

    Article  PubMed  CAS  Google Scholar 

  26. Vize CM, Cooper PJ (1995) Sexual abuse in patients with eating disorder, patients with depression, and normal controls. A comparative study. Br J Psychiatry 167:80–85

    Article  PubMed  CAS  Google Scholar 

  27. Fallon P, Wonderlich SA (1997) Sexual abuse and other forms of trauma. In: Garner DM, Garfinkel PE (eds) Handbook of treatment for eating disorders. Guilford, New York, pp 394–414

    Google Scholar 

  28. Kinzl JF et al (1994) Family background and sexual abuse associated with eating disorders. Am J Psychiatry 151:1127–1131

    PubMed  CAS  Google Scholar 

  29. Herzog DB (1982) Bulimia in the adolescent. Am J Dis Child 136:985–989

    PubMed  CAS  Google Scholar 

  30. Harris RJ (1995) Where is the child’s environment? A group socialization theory of development. Psychol Rev 102:458–489

    Article  Google Scholar 

  31. LaGreca AM, Prinstein MJ, Fetter MD (2001) Adolescent peer crow affiliation:linkages with health-risk behaviors and close friendships. J Pediatr Psychol 26:131–143

    Article  CAS  Google Scholar 

  32. Brown BB (2004) Adolescents’ relationships with peers. In: Lerner RM, Steinberg L (eds) Handbook of adolescent psychology, 2nd edn. Wiley, New Jersey, pp 363–394

    Google Scholar 

  33. Heaven PCL (1994) Contemporary adolescence: a social psychological approach. Macmillan, Melbourne

    Google Scholar 

  34. Grissett NI, Norvell NK (1992) Perceived social support, social skills, and quality of relationships in bulimic women. J Consult Clin Psychol 2:293–299

    Google Scholar 

  35. Bruce ML, Hoff RA (1994) Social and physical health risk factors for first onset major depressive disorder in a community sample. Soc Psychiatry Psychiatr Epidemiol 29:165–171

    PubMed  CAS  Google Scholar 

  36. Darke S, Ross J (2002) Suicide among heroin users: rates, risk factors and methods. Addiction 97:1383–1394

    Article  PubMed  Google Scholar 

  37. Kendler KS et al (2000) Childhood sexual abuse and adult psychiatric and substance use disorders in women. Arch Gen Psychiatry 57:953–959

    Article  PubMed  CAS  Google Scholar 

  38. Harlow HF, Harlow MK (1965) The effect of rearing conditions on behavior. Int J Psychiatry 1:43–51

    PubMed  CAS  Google Scholar 

  39. Heim C, Plotsky PM, Nemeroff CB (2004) Importance of studying the contributions of early adverse experience to neurobiological findings in depression. Neuropsycho­pharmacology 29:641–648

    Article  PubMed  Google Scholar 

  40. Rapoport JL et al (2005) The neurodevelopmental model of schizophrenia: update 2005. Mol Psychiatry 10:434–449

    Article  PubMed  CAS  Google Scholar 

  41. Fone KCF, Porkess MV (2008) Behavioural and neurochemical effects of post-weaning social isolation in rodents—relevance to developmental neuropsychiatric disorders. Neurosci Biobehav Rev 32:1087–1102

    Article  PubMed  CAS  Google Scholar 

  42. Gutman DA, Nemeroff CB (2003) Persistent central nervous system effects of an adverse early environment: clinical and preclinical studies. Physiol Behav 79:471–478

    Article  PubMed  CAS  Google Scholar 

  43. Hall FS (1998) Social deprivation of neonatal, adolescent, and adult rats has distinct neurochemical and behavioral consequences. Crit Rev Neurobiol 12:129–162

    Article  PubMed  CAS  Google Scholar 

  44. Lapiz MD et al (2003) Influence of postweaning social isolation in the rat on brain development, conditioned behavior, and neurotransmission. Neurosci Behav Phys 33:13–29

    Article  CAS  Google Scholar 

  45. Andersen SL (2003) Trajectories of brain development: point of vulnerability or window of opportunity? Neurosci Biobehav Rev 27:3–18

    Article  PubMed  Google Scholar 

  46. Spear LP (2000) The adolescent brain and age-related behavioral manifestations. Neurosci Biobehav Rev 24:417–463

    Article  PubMed  CAS  Google Scholar 

  47. Vazquez DM et al (2006) Brain corticotrophin-releasing hormone (CRH) circuits in the developing rat: effect of maternal deprivation. Brain Res 1121:83–94

    Article  PubMed  CAS  Google Scholar 

  48. Heim C et al (2008) The link between childhood trauma and depression: insights from HPA axis studies in humans. Psycho­neuroendocrinology 33:693–710

    Article  PubMed  CAS  Google Scholar 

  49. Plotsky PM et al (2005) Long-term consequences of neonatal rearing on central corticotropin-releasing factor systems in adult male rat offspring. Neuropsychopharmacology 30:2192–2204

    Article  PubMed  CAS  Google Scholar 

  50. Harmer CJ, Phillips GD (1998) Isolation rearing enhances acquisition in a conditioned inhibition paradigm. Physiol Behav 65:525–533

    Article  PubMed  CAS  Google Scholar 

  51. Wongwitdecha N, Marsden CA (1996) Effects of social isolation rearing on learning in the Morris water maze. Brain Res 715:119–124

    Article  PubMed  CAS  Google Scholar 

  52. Hall FS, Humby T, Wilkinson LS (1997) The effects of isolation-rearing on preference by rats for a novel environment. Physiol Behav 62:299–303

    Article  PubMed  CAS  Google Scholar 

  53. Hellemans KG, Benge LC, Olmstead MC (2004) Adolescent enrichment partially reverses the social isolation syndrome. Dev Brain Res 150:103–115

    Article  CAS  Google Scholar 

  54. Ryu V et al (2009) Post-weaning isolation promotes food intake and body weight gain in rats that experienced neonatal maternal separation. Brain Res 1295:127–134

    Article  PubMed  CAS  Google Scholar 

  55. Weiss IC et al (2004) Effect of social isolation on stress-induced behavioral and neuroendocrine state in the rat. Behav Brain Res 152:279–295

    Article  PubMed  CAS  Google Scholar 

  56. Wright IK, Upton N, Marsden CA (1991) Resocialisation of isolation-rared rats does not alter their anxiogenic profile on the elevated X-maze model of anxiety. Physiol Behav 50:1129–1132

    Article  PubMed  CAS  Google Scholar 

  57. Potegal M, Einon D (1989) Aggressive behaviors in adult rats deprived of playfighting experience as juveniles. Dev Psychobiol 22:159–172

    Article  PubMed  CAS  Google Scholar 

  58. Ding Y et al (2005) Enhanced cocaine self-administration in adult rats with adolescent isolation experience. Pharmacol Biochem Behav 82:673–677

    Article  CAS  Google Scholar 

  59. Bickerdike MJ, Wright IK, Marsden CA (1993) Social isolation attenuates rat forebrain 5-HT release induced by KCl stimulation and exposure to a novel environment. Behav Pharmacol 4:231–236

    Article  PubMed  CAS  Google Scholar 

  60. Fone KC et al (1996) Increased 5-HT2C receptor responsiveness occurs on rearing rats in social isolation. Psychopharmacology 123:346–352

    Article  PubMed  CAS  Google Scholar 

  61. Fulford AJ, Marsden CA (1998) Conditioned release of 5-hydroxytryptamine in vivo in the nucleus accumbens following isolation-rearing in the rat. Neuroscience 83:481–487

    Article  PubMed  CAS  Google Scholar 

  62. Fulford AJ, Marsden CA (1998) Effect of isolation-rearing on conditioned dopamine release in vivo in the nucleus accumbens of the rat. J Neurochem 70:384–390

    Article  PubMed  CAS  Google Scholar 

  63. Jones GH et al (1992) Dopaminergic and serotonergic function following isolation rearing in rats: study of behavioural responses and postmortem and in vivo neurochemistry. Pharmacol Biochem Behav 3:17–35

    Article  Google Scholar 

  64. Muchimapura S et al (2002) Isolation rearing in the rat disrupts the hippocampal response to stress. Neuroscience 112:697–705

    Article  PubMed  CAS  Google Scholar 

  65. Whitaker-Azmitia P et al (2000) Isolation-rearing of rats produces deficits as adults in the serotonergic innervation of hippocampus. Peptides 21:1755–1759

    Article  PubMed  CAS  Google Scholar 

  66. Serra M et al (2005) Social isolation-induced changes in the hypothalamic-pituitary-adrenal axis in the rat. Stress 8:259–264

    Article  PubMed  CAS  Google Scholar 

  67. Douglas L, Varlinskaya E, Spear L (2004) Rewarding properties of social interactions in adolescent and adult male and female rates: impact of social versus isolate housing of subjects and partners. Dev Psychobiol 45:153–162

    Article  PubMed  Google Scholar 

  68. McCormick CM, Smith C, Mathews IZ (2008) Effects of chronic social stress in adolescence on anxiety and neuroendocrine response to mild stress in male and female rats. Behav Brain Res 187:228–238

    Article  PubMed  CAS  Google Scholar 

  69. Panksepp JB, Lahvis GP (2007) Social reward among juvenile mice. Genes Brain Behav 6:661–671

    Article  PubMed  CAS  Google Scholar 

  70. Albenidou-Farmaki E et al (2008) Increased anxiety level and high salivary and serum cortisol concentrations in patients with recurrent aphthous stomatitis. Tohoku J Exp Med 214:291–296

    Article  Google Scholar 

  71. Goossens L et al (2009) Loss of control over eating in overweight youngsters: the role of anxiety, depression and emotional eating. Eur Eat Disord Rev 17:68–78

    Article  PubMed  Google Scholar 

  72. Grilo CM, White MA, Masheb RM (2009) DSM-IV psychiatric disorder comorbidity and its correlates in binge eating disorder. Int J Eat Disord 42:228–234

    Article  PubMed  Google Scholar 

  73. Javaras KN et al (2008) Co-occurrence of binge eating disorder with psychiatric and mental disorders. J Clin Psychiatry 69:266–273

    Article  PubMed  Google Scholar 

  74. Jahng JW et al (2011) Hyperphagia and depression-like behavior by adolescence social isolation in female rats. Int J Dev Neurosci 30:47–53

    Article  PubMed  Google Scholar 

  75. Faraday MM (2002) Rat sex and strain differences in responses to stress. Physiol Behav 75:507–522

    Article  PubMed  CAS  Google Scholar 

  76. Faraday MM, O’Donoghue VA, Grunberg NE (2003) Effects of nicotine and stress on locomotion in Sprague–Dawley and Long–Evans male and female rats. Pharmacol Biochem Behav 74:325–333

    Article  PubMed  CAS  Google Scholar 

  77. Lehmann J et al (1999) The maternal separation paradigm and adult emotionality and cognition in male and female Wistar rats. Pharmacol Biochem Behav 64:705–715

    Article  PubMed  CAS  Google Scholar 

  78. Wigger A, Neumann ID (1999) Periodic maternal deprivation induces gender-dependent alterations in behavioral and neuroendocrine responses to emotional stress in adult rats. Physiol Behav 66:293–302

    Article  PubMed  CAS  Google Scholar 

  79. McCormick CM et al (2005) Long-lasting, sex- and age-specific effects of social stressors on corticosterone responses to restraint and on locomotor responses to psychostimulants in rats. Horm Behav 48:64–74

    Article  PubMed  CAS  Google Scholar 

  80. Lehmann J, Feldon J (2000) Long-term biobehavioral effects of maternal separation in the rat: consistent or confusing? Rev Neurosci 11:383–408

    Article  PubMed  CAS  Google Scholar 

  81. Laviola G, Adriani W et al (2003) Risk-taking behavior in adolescent mice: psychobiological determinants and early epigenetic influence. Neurosci Biobehav Rev 27:19–31

    Article  PubMed  Google Scholar 

  82. MacMillan HL et al (2001) Childhood abuse and lifetime psychopathology in a community sample. Am J Psychiatry 158:1878–1883

    Article  PubMed  CAS  Google Scholar 

  83. Agid O et al (1999) Environment and vulnerability to major psychiatric illness: a case control study of early parental loss in major depression, bipolar disorder and schizophrenia. Mol Psychiatry 4:163–172

    Article  PubMed  CAS  Google Scholar 

  84. Heim C, Nemeroff CB (2001) The role of childhood trauma in the neurobiology of mood and anxiety disorders: preclinical and clinical studies. Biol Psychiatry 49:1023–1039

    Article  PubMed  CAS  Google Scholar 

  85. Mullen PE et al (1996) The long-term impact of the physical, emotional, and sexual abuse of children: a community study. Child Abuse Negl 20:7–12

    Article  PubMed  CAS  Google Scholar 

  86. Stein MB et al (1996) Childhood physical and sexual abuse in patients with anxiety disorders in a community sample. Am J Psychiatry 153:275–277

    PubMed  CAS  Google Scholar 

  87. Felitti VJ et al (1998) Relationship of childhood abuse and household dysfunction to many of the leading causes of death in adults. The Adverse Childhood Experiences (ACE) Study. Am J Prev Med 14:245–258

    Article  PubMed  CAS  Google Scholar 

  88. Tichomirowa MA et al (2005) Endocrine disturbances in depression. J Endocrinol Invest 28:89–99

    PubMed  CAS  Google Scholar 

  89. Kim HJ et al (2005) Fasting-induced increases of arcuate NPY mRNA and plasma corticosterone are blunted in the rat experienced neonatal maternal separation. Neuropeptides 39:587–594

    Article  PubMed  CAS  Google Scholar 

  90. Ryu V et al (2008) Sustained hyperphagia in adolescent rats that experienced neonatal maternal separation. Int J Obes 32:1355–1362

    Article  CAS  Google Scholar 

  91. Lee JH et al (2007) Depressive behaviors and decreased expression of serotonin reuptake transporter in rats that experienced neonatal maternal separation. Neurosci Res 58:32–39

    Article  PubMed  CAS  Google Scholar 

  92. Mann JJ et al (1995) Blunted serotonergic responsivity in depressed inpatients. Neuropsychopharmacology 13:53–64

    Article  PubMed  CAS  Google Scholar 

  93. Drevets WC et al (2000) Serotonin type-1 A receptor imaging in depression. Nucl Med Biol 27:499–507

    Article  PubMed  CAS  Google Scholar 

  94. Bhagwagar Z, Whale R, Cowen OJ (2002) State and trait abnormalities in serotonin function in major depression. Br J Psychiatry 180:24–28

    Article  PubMed  Google Scholar 

  95. Graeff FG (1997) Serotonergic systems. Psychiatr Clin North Am 20:723–739

    Article  PubMed  CAS  Google Scholar 

  96. Nutt DJ (2001) Neurobiological mechanisms in generalized anxiety disorder. J Clin Psychiatry 62(Suppl 11):22–27

    PubMed  CAS  Google Scholar 

  97. Matthews K et al (2001) Periodic maternal separation of neonatal rats produces region- and gender-specific effects on biogenic amine content in postmortem adult brain. Synapse 40:1–10

    Article  PubMed  CAS  Google Scholar 

  98. Gartside SE, Troakes C, Ingram CD et al (2003) Early life adversity programs changes in central 5-HT neuronal function in adulthood. Eur J Neurosci 17:2401–2408

    Article  PubMed  Google Scholar 

  99. Arborelius L et al (2004) Increased responsiveness of presumed 5-HT cells to citalopram in adult rats subjected to prolonged maternal separation relative to brief separation. Psychopharmacology 176:248–255

    Article  PubMed  CAS  Google Scholar 

  100. Van Riel E et al (2004) Effect of early life stress on serotonin responses in the hippocampus of young adult rats. Synapse 53:11–19

    Article  PubMed  CAS  Google Scholar 

  101. Erdeljan P et al (2005) Glucocorticoids and serotonin alter glucocorticoid receptor mRNA levels in fetal guinea-pig hippocampal neurons, in vitro. Reprod Fertil Dev 17:743–749

    Article  PubMed  CAS  Google Scholar 

  102. Jahng JW et al (2010) Mesolimbic dopaminergic activity responding to acute stress is blunted in adolescent rats that experienced neonatal maternal separation. Neuroscience 171:144–152

    Article  PubMed  CAS  Google Scholar 

  103. Gorman JM, Kent JM (1999) SSRIs and SMRIs: broad spectrum of efficacy beyond major depression. J Clin Psychiatry 60:33–38

    Article  PubMed  Google Scholar 

  104. Malison RT et al (1998) Reduced brain serotonin transporter availability in major depression as measured by (123I)-2beta-carbomethoxy-3beta-(4-iodophenyl)tropane and single photon emission computed tomography. Biol Psychiatry 44:1090–1098

    Article  PubMed  CAS  Google Scholar 

  105. Collin M et al (2000) Decreased 5-HT transporter mRNA in neurons of the dorsal raphe nucleus and behavioral depression in the obese leptin-deficient ob/ob mouse. Mol Brain Res 81:51–61

    Article  PubMed  CAS  Google Scholar 

  106. Lira A et al (2003) Altered depression-related behaviors and functional changes in the dorsal raphe nucleus of serotonin transporter-deficient mice. Biol Psychiatry 54:960–971

    Article  PubMed  CAS  Google Scholar 

  107. Linnet K et al (1995) Serotonin depletion decreases serotonin transporter mRNA levels in rat brain. Brain Res 697:251–253

    Article  PubMed  CAS  Google Scholar 

  108. Choi SH et al (2003) Systemic 5-hydroxy-L-tryptophan down-regulates the arcuate CART mRNA level in rats. Regul Pept 115:73–80

    Article  PubMed  CAS  Google Scholar 

  109. Matthews K, Wilkinson LS, Robbins TW (1996) Repeated maternal separation of preweanling rats attenuates behavioral responses to primary and conditioned incentives in adulthood. Physiol Behav 59:99–107

    Article  PubMed  CAS  Google Scholar 

  110. McIntosh J, Animan H, Merali Z (1999) Short- and long periods of neonatal maternal separation differentially affect anxiety and feeding in adult rats: gender-dependent effects. Brain Res Dev Brain Res 113:97–106

    Article  PubMed  CAS  Google Scholar 

  111. Iwasaki S et al (2000) Effect of maternal separation on feeding behavior of rats in later life. Physiol Behav 70:551–556

    Article  PubMed  CAS  Google Scholar 

  112. Yoo SB et al (2011) The arcuate NPY, POMC, and CART expressions responding to food deprivation are exaggerated in young female rats that experienced neonatal maternal separation. Neuropeptides 45:343–349

    Article  PubMed  CAS  Google Scholar 

  113. Epling WF, Pierce WD (1996) Activity anorexia: theory, research, and treatment. Erlbaum, NJ

    Google Scholar 

  114. Kron L, Katz JL, Gorzynski G (1978) Hyperactivity in anorexia nervosa: a fundamental clinical feature. Compr Psychiatry 19:433–440

    Article  PubMed  CAS  Google Scholar 

  115. Dwyer DM, Boakes RA (1997) Activity-based anorexia in rats as failure to adapt to a feeding schedule. Behav Neurosci 111:195–205

    Article  PubMed  CAS  Google Scholar 

  116. Routtenberg A (1968) “Self-starvation” of rats living in activity wheels: adaptation effects. J Comp Physiol Psychol 66:234–238

    Article  PubMed  CAS  Google Scholar 

  117. Carrera O, Gutierrez E, Boakes RA (2006) Early handling reduces vulnerability of rats to activity-based anorexia. Dev Psychobiol 48:520–527

    Article  PubMed  CAS  Google Scholar 

  118. Meaney MJ et al (1996) Early environmental regulation of forebrain glucocorticoid receptor gene expression: implications for adrenocortical responses to stress. Dev Neurosci 18:49–72

    Article  PubMed  CAS  Google Scholar 

  119. Hancock SD, Grant VL (2009) Early maternal separation increases symptoms of activity-based anorexia in male and female rats. J Exp Psychol Anim Behav Process 35:394–406

    Article  PubMed  Google Scholar 

  120. Hancock SD, Grant VL (2009) Sexually dimorphic effects of postnatal treatment on the development of activity-based anortexia in adolescent and adult rats. Dev Psychobiol 51:679–695

    Article  PubMed  Google Scholar 

  121. Connan F et al (2007) An investigation of hypothalamic-pituitary-adrenal axis hyperactivity in anorexia nervosa: the role of CRH and AVP. J Psychiatr Res 41:131–143

    Article  PubMed  Google Scholar 

  122. Kaye W (2008) Neurobiology of anorexia and bulimia nervosa. Physiol Behav 94:121–135

    Article  PubMed  CAS  Google Scholar 

  123. Kawaguchi M et al (2005) Dorsomedial hypothalamic corticotropin-releasing factor mediation of exercise induced anorexia. Am J Physiol Regul Integr Comp Physiol 288:R1800–R5

    Article  PubMed  CAS  Google Scholar 

  124. Wong ML et al (1993) Activityinduced anorexia in rats does not affect hypothalamic neuropeptides gene-expression chronically. Int J Eat Disord 13:399–405

    Article  PubMed  CAS  Google Scholar 

  125. Burden VR et al (1993) Activity of the hypothalamic-pituitary-adrenal axis is elevated in rats with activity-based anorexia. J Nutr 123:1217–1225

    PubMed  CAS  Google Scholar 

  126. Robbins TW, Jones GH, Wilkinson LS (1996) Behavioural and neurochemical effects of early social deprivation in the rat. J Psychopharmacol 10:39–47

    Article  PubMed  CAS  Google Scholar 

  127. Gentsch C, Lichtsteiner M, Feer H (1981) Locomotor activity, defecation score and corticosterone levels during an open field exposure: a comparison among individually and group-housed rats and genetically selected rat lines. Physiol Behav 27:183–186

    Article  PubMed  CAS  Google Scholar 

  128. Gentsch C, Lichtsteiner M, Kraeuchi K et al (1982) Different reaction patterns in individually and socially reared rats during exposures to novel environments. Behav Brain Res 4:45–54

    Article  PubMed  CAS  Google Scholar 

  129. Aitchison LK, Hughes RN (2006) Treatment of adolescent rats with 1- benzylpiperazine: a preliminary study of subsequent behavioral effects. Neurotoxicol Teratol 28:453–458

    Article  PubMed  CAS  Google Scholar 

  130. Strack AM, Dallman MF et al (1995) Glucocorticoids and insulin: reciprocal signals for energy balance. Am J Physiol 268:R142–149

    PubMed  CAS  Google Scholar 

  131. Cavagnini F et al (2000) Glucocorticoids and neuroendocrine function. Int J Obes 24:S77–S79

    Article  CAS  Google Scholar 

  132. Timofeeva E et al (2002) Neural activation and corticotrophin-releasing hormone expression in the brain of obese (fa/fa) and lean (fa/?) Zucker rats in response to refeeding. Eur J Neurosci 15:1013–1029

    Article  PubMed  Google Scholar 

  133. Makimura H et al (2003) Role of glucocorticoids in mediating effects of fasting and diabetes on hypothalamic gene expression. BMC Physiol 3:1–13

    Article  Google Scholar 

  134. Kim YM et al (2004) RU486 blocks fasting-induced decrease of neuronal nitric oxide synthase in the rat paraventricular nucleus. Brain Res 1018:221–226

    Article  PubMed  CAS  Google Scholar 

  135. Jahng JW et al (2005) Refeeding-induced expression of neuronal nitric oxide synthase in the rat paraventricular nucleus. Brain Res 1048:185–192

    Article  PubMed  CAS  Google Scholar 

  136. Milde AM, Enger O, Murison R (2004) The effects of postnatal maternal separation on stress responsivity and experimentally induced colitis in adult rats. Physiol Behav 81:71–84

    Article  PubMed  CAS  Google Scholar 

  137. Tempel DL, Leibowitz SF (1994) Adrenal steroid receptors: interactions with brain neuropeptide systems in relation to nutrient intake and metabolism. J Neuroendocrinol 6:479–501

    Article  PubMed  CAS  Google Scholar 

  138. Zakrzewska KE et al (1999) Induction of obesity and hyperleptinemia by central glucocorticoid infusion in the rat. Diabetes 48:365–370

    Article  PubMed  CAS  Google Scholar 

  139. Jahng JW et al (1998) Neuropeptide Y mRNA and serotonin innervation in the arcuate nucleus of anorexia mutant mice. Brain Res 790:67–73

    Article  PubMed  CAS  Google Scholar 

  140. Swart I, Houpt TA et al (2002) Hypothalamic NPY, AGRP, and POMC mRNA responses to leptin and refeeding in mice. Am J Physiol Regul Integr Comp Physiol 283:R1020–1026

    PubMed  CAS  Google Scholar 

  141. Bi S, Robinson BM, Moran TH (2003) Acute food deprivation and chronic food restriction differently affect hypothalamic NPY mRNA expression. Am J Physiol Regul Integr Comp Physiol 285:R1030–1036

    PubMed  CAS  Google Scholar 

  142. Kalra SP et al (1991) Neuropeptide Y secretion increases in the paraventricular nucleus in association with increased appetitie for food. Proc Natl Acad Sci USA 88:10931–10935

    Article  PubMed  CAS  Google Scholar 

  143. Cintra A et al (1991) Central peptidergic neurons as targets for glucocorticoid action. Evidence for the presence of glucocorticoid receptor immunoreactivity in various types of classes of peptidergic neurons. J Steroid Biochem Mol Biol 40:93–103

    Article  PubMed  CAS  Google Scholar 

  144. Corder R, Saudan P, Muller AF, Gallard RC et al (1988) Dexamethasone treatment increases neuropeptide Y levels in rat hypothalamic neurons. Life Sci 43:1879–1886

    Article  PubMed  CAS  Google Scholar 

  145. Higuchi H, Yang HT, Sabol S (1988) Rat neuropeptide Y precursor gene expression. J Biol Chem 13:6288–6295

    Google Scholar 

  146. White BD, Dean RG, Martin RJ (1990) Adrenalectomy decreases neuropeptide Y mRNA levels in the arcuate nucleus. Brain Res Bull 25:711–715

    Article  PubMed  CAS  Google Scholar 

  147. Watanabe Y, Akabayashi A, McEwen BS (1995) Adrenal steroid regulation of neuropeptide Y (NPY) mRNA: differences between dentate hilus and locus coeruleus and arcuate nucleus. Mol Brain Res 28:135–140

    Article  PubMed  CAS  Google Scholar 

  148. Savontaus E, Conwell IM, Wardlaw SL (2002) Effects of adrenalectomy on AGRP, POMC, NPY and CART gene expression in the basal hypothalamus of fed and fasted rats. Brain Res 958:130–138

    Article  PubMed  CAS  Google Scholar 

  149. Ponsalle P et al (1992) Glucocorticoids are required for food deprivation-induced increases in hypothalamic neuropeptide Y expression. J Neuroendocrinol 4:585–591

    Article  PubMed  CAS  Google Scholar 

  150. Suda T et al (1993) Neuropeptide Y increases the corticotropin-releasing factor messenger ribonucleic acid level in the rat hypothalamus. Brain Res Mol Brain Res 18:311–315

    Article  PubMed  CAS  Google Scholar 

  151. Haas DA, George SR (1989) Neuropeptide Y-induced effects on hypothalamic corticotropin-releasing factor content and release are dependent on noradrenergic/adrenergic neurotransmission. Brain Res 498:333–338

    Article  PubMed  CAS  Google Scholar 

  152. Small CJ et al (1997) Peptide analogue studies of the hypothalamic neuropeptide Y receptor mediating pituitary adrnocorticotrophic hormone release. Proc Natl Acad Sci USA 94:11686–11691

    Article  PubMed  CAS  Google Scholar 

  153. Hanson ES, Levin N, Dallman MF (1997) Elevated corticosterone is not required for the rapid induction of neuropeptide Y gene expression by an overnight fast. Endocrinology 138:1041–1047

    Article  PubMed  CAS  Google Scholar 

  154. Desbonnet L et al (2008) Sexually dimorphic effects of maternal separation stress on corticotrophin-releasing factor and vasopressin systems in the adult rat brain. Int J Dev Neurosci 26:259–268

    Article  PubMed  CAS  Google Scholar 

  155. Barna I et al (2003) Gender-specific effect of maternal deprivation on anxiety and corticotrophin-releasing hormone mRNA expression in rats. Brain Res Bull 62:85–91

    Article  PubMed  CAS  Google Scholar 

  156. Slotten HA et al (2006) Long-lasting changes in behavioural and neuroendocrine indices in the rat following neonatal maternal separation: gender-dependent effects. Brain Res 1097:123–132

    Article  PubMed  CAS  Google Scholar 

  157. Stanley BG, Leibowitz SF (1985) Neuropeptide Y injected in the paraventricular hypothalamus: a powerful stimulant of feeding behavior. Proc Natl Acad Sci USA 82:3940–3943

    Article  PubMed  CAS  Google Scholar 

  158. Kalra SP et al (1999) Interacting appetite-regulating pathways in the hypothalamic regulation of body weight. Endocr Rev 20:68–100

    Article  PubMed  CAS  Google Scholar 

  159. Schwartz MW et al (2000) Central nervous system control of food intake. Nature 404:661–671

    PubMed  CAS  Google Scholar 

  160. Sindelar DK et al (2002) Attenuation of diabetic hyperphagia in neuropeptide Y- deficient mice. Diabetes 51:778–783

    Article  PubMed  CAS  Google Scholar 

  161. Namkoong C et al (2005) Enhanced hypothalamic AMP-activated protein kinase activity contributes to hyperphagia in diabetic rats. Diabetes 54:63–68

    Article  PubMed  CAS  Google Scholar 

  162. Fairburn CG, Harrison PJ (2003) Eating disorders. Lancet 361:407–416

    Article  PubMed  Google Scholar 

  163. Graham B et al (1990) Effect of weight cycling on susceptibility to dietary obesity. Am J Physiol 259:R1096–1102

    PubMed  CAS  Google Scholar 

  164. Stein LJ et al (1991) Early-onset repeated dieting reduces food intake and body weight but not adiposity in dietary-obese female rats. Physiol Behav 51:1–6

    Article  Google Scholar 

  165. Sea MM, Chen ZY et al (2000) Weight cycling-induced alteration in fatty acid metabolism. Am J Physiol Regul Integr Comp Physiol 279:R1145–1155

    PubMed  CAS  Google Scholar 

  166. Kochan Z et al (2001) The decrease of rat postprandial plasma tryglycerol concentration after multiple cycles of starvation-refeeding. Horm Metab Res 33:26–29

    Article  PubMed  CAS  Google Scholar 

  167. Kim YW, Scarpace PJ (2003) Repeated fasting/refeeding elevates plasma leptin without increasing fat mass in rats. Physiol Behav 78:459–464

    Article  PubMed  CAS  Google Scholar 

  168. Kelley AE, Schiltz CA, Landry CF (2005) Neural systems recruited by drug- and food-related cues: studies of gene activation in corticolimbic regions. Physiol Behav 86:11–14

    Article  PubMed  CAS  Google Scholar 

  169. Paterson NE, Markou A (2007) Animal models and treatments for addiction and depression co-morbidity. Neurotox Res 11:1–32

    Article  PubMed  CAS  Google Scholar 

  170. Macht M (2008) How emotions affect eating: a five-way model. Appetite 50:1–11

    Article  PubMed  Google Scholar 

  171. Pecoraro N et al (2004) Chronic stress promotes palatable feeding, which reduces signs of stress: feedforward and feedback effects of chronic stress. Endocrinology 145:3754–3762

    Article  PubMed  CAS  Google Scholar 

  172. Fleur SE et al (2005) Choice of lard, but not total lard calories, damps adrenocorticotropin responses to restraint. Endocrinology 146:2193–2199

    Article  PubMed  CAS  Google Scholar 

  173. Adam TC, Epel ES (2007) Stress, eating, and the reward system. Physiol Behav 91:449–458

    Article  PubMed  CAS  Google Scholar 

  174. Arellano CM (1996) Child maltreatment and substance use: a review of the literature. Subst Use Misuse 31:927–935

    Article  PubMed  CAS  Google Scholar 

  175. Ireland T, Widom CS (1994) Childhood victimization and risk for alcohol and drug arrests. Int J Addict 29:235–274

    PubMed  CAS  Google Scholar 

  176. Medrano MA, Desmond DP et al (1999) Prevalence of childhood trauma in a community sample of substance-abusing women. Am J Drug Alcohol Abuse 25:449–462

    Article  PubMed  CAS  Google Scholar 

  177. Kalinichev M, Easterling KW, Holtzman SG (2002) Early neonatal experience of Long–Evans rats results in long-lasting changes in reactivity to a novel environment and morphine induced sensitization and tolerance. Neuropsychopharmacology 27:518–533

    PubMed  CAS  Google Scholar 

  178. Li Y, Robinson TE, Bhatnagar S (2003) Effects of maternal separation on behavioural sensitization produced by repeated cocaine administration in adulthood. Brain Res 960:42–47

    Article  PubMed  CAS  Google Scholar 

  179. Di Chiara G, Loddo P, Tanda G (1991) Reciprocal changes in prefrontal and limbic dopamine responsiveness to aversive and rewarding stimuli after chronic mild stress: implications for the psychobiology of depression. Biol Psychiatry 46:1624–1633

    Article  Google Scholar 

  180. Yadid G, Overstreet DH, Zangen A (2001) Limbic dopaminergic adaptation to a stressful stimulus in a rat model of depression. Brain Res 896:43–47

    Article  PubMed  CAS  Google Scholar 

  181. Bassareo V, De Luca MA, Di Chiara G (2002) Differential expression of motivational stimulus properties by dopamine in nucleus accumbens shell versus core and prefrontal cortex. J Neurosci 22:4709–4719

    PubMed  CAS  Google Scholar 

  182. Kirkham TC et al (2002) Endocannabinoid levels in rat limbic forebrain and hypothalamus in relation to fasting, feeding and satiation: stimulation of eating by 2- arachidonoyl glycerol. Br J Pharmacol Chemother 136:550–557

    Article  CAS  Google Scholar 

  183. Kelley AE et al (2005) Corticostriatal hypothalamic circuitry and food motivation: integration of energy, action and reward. Physiol Behav 86:773–795

    Article  PubMed  CAS  Google Scholar 

  184. Di Chiara G, Bassareo V (2007) Reward system and addiction: what dopamine does and doesn’t do. Curr Opin Pharmacol 7:69–76

    Article  PubMed  CAS  Google Scholar 

  185. Sahr AE et al (2008) Activation of mesolibic dopamine neurons during novel and daily limited access to palatable food is blocked by the opioid antagonist LY255582. Am J Physiol Regul Integr Comp Physiol 295:R463–R471

    Article  PubMed  CAS  Google Scholar 

  186. Yamamoto T (2008) Central mechanisms of roles of taste in reward and eating. Act Physiol Hung 95:165–186

    Article  CAS  Google Scholar 

  187. Noh SJ et al (2008) Suppressed intake of highly palatable food and dysfunction of the HPA axis activity responding to restraint stress in adolescent rats that experienced neonatal maternal separation. Appetite 51:388

    Article  Google Scholar 

  188. Huot RL et al (2001) Development of adult ethanol preference and anxiety as a consequence of neonatal maternal separation in Long Evans rats and reversal with antidepressant treatment. Psychopharmacology 158:366–373

    Article  PubMed  CAS  Google Scholar 

  189. Maniam J, Morris MJ (2010) Palatable cafeteria diet ameliorats anxiety and depression-like symptoms following an adverse early environment. Psychoneuroendocrinology 35:717–728

    Article  PubMed  CAS  Google Scholar 

  190. Tacchi R et al (2008) Sucrose intake: Increase in non-stressed rats and reduction in chronically stressed rats are both prevented by the gamma-hydroxybutyrate (GHB) analogue, GET7. Pharmacol Res 57:464–468

    Article  PubMed  CAS  Google Scholar 

  191. Koob GF, Bloom FE (1988) Cellular and molecular mechanisms of drug dependence. Science 242:715–723

    Article  PubMed  CAS  Google Scholar 

  192. Willner P, Muscat R, Papp M (1992) Chronic mild stress-induced anhedonia: a realistic animal model of depression. Neurosci Biobehav Rev 16:525–534

    Article  PubMed  CAS  Google Scholar 

  193. Gorwood P (2008) Neurobiological mechanisms of anhedonia. Dialogues Clin Neurosci 10:291–299

    PubMed  Google Scholar 

  194. Di Chiara G, Tanda G (1997) Blunting of reactivity of dopamine transmission to palatable food: a biochemical marker of anhedonia in the CMS model? Psychopharmacology 134:351–353

    Article  PubMed  Google Scholar 

  195. Scheggi S et al (2002) Selective modifications in the nucleus accumbens of dopamine synaptic transmission in rats exposed to chronic stress. J Neurochem 83:895–903

    Article  PubMed  CAS  Google Scholar 

  196. Meaney MJ, Brake W, Gratton A (2002) Environmental regulation of the development of mesolimbic dopamine systems: a neurobiological mechanism for vulnerability to drug abuse? Psychoneuroendocrinology 27:127–138

    Article  PubMed  CAS  Google Scholar 

  197. Kalivas PW, Duffy P (1995) Selective activation of dopamine transmission in the shell of the nucleus accumbens by stress. Brain Res 675:325–328

    Article  PubMed  CAS  Google Scholar 

  198. Tidey JW, Miczek KA (1996) Social defeat stress selectively alters mesocorticolimbic dopamine release: an in vivo microdialysis study. Brain Res 721:140–149

    Article  PubMed  CAS  Google Scholar 

  199. Saal D et al (2003) Drugs of abuse and stress trigger a common synaptic adaptation in dopamine neurons. Neuron 37:577–582

    Article  PubMed  CAS  Google Scholar 

  200. Yoo SB et al (2009) Neonatal maternal separation may suppress dopaminergic activity in the reward pathway, affect palatable food intake in rats. Appetite 52:866

    Article  Google Scholar 

  201. Meredith GE, Pennartz CM, Groenewegen HJ (1993) The cellular framework for chemical signalling in the nucleus accumbens. Prog Brain Res 99:3–24

    Article  PubMed  CAS  Google Scholar 

  202. Perrotti LI et al (2004) Induction of delta FosB in reward-related brain structures after chronic stress. J Neurosci 24:10594–10602

    Article  PubMed  CAS  Google Scholar 

  203. Kim KS, Han PL (2009) Mice lacking adenylyl cyclase-5 cope badly with repeated restraint stress. J Neurosci Res 87:2983–2993

    Article  PubMed  CAS  Google Scholar 

  204. Oswald LM et al (2005) Relationships among ventral striatal dopamine release, cortisol secretion, and subjective responses to amphetamine. Neuropsychopharmacology 30:821–832

    PubMed  CAS  Google Scholar 

  205. Wand GS et al (2007) Association of amphetamine-induced striatal dopamine release and cortisol responses to psychological stress. Neuropsychopharmacology 32:2310–2320

    Article  PubMed  CAS  Google Scholar 

  206. Parsons LH, Justice JB Jr (1993) Perfusate serotonin increases extracellular dopamine in the nucleus accumbens as measured by in vivo microdialysis. Brain Res 606:195–199

    Article  PubMed  CAS  Google Scholar 

  207. Di Matteo V et al (2001) Role of 5-HT(2 C) receptors in the control of central dopamine function. Trends Pharmacol Sci 22:229–232

    Article  PubMed  Google Scholar 

  208. Zangen A et al (2001) Association between depressive behavior and absence of serotonin-dopamine interaction in the nucleus accumbens. Psychopharmacology 155:434–439

    Article  PubMed  CAS  Google Scholar 

  209. Van Bockstaele EJ, Chan J, Pickel VM (1996) Pre- and postsynaptic sites for serotonin modulation of GABA-containing neurons in the shell region of the rat nucleus accumbens. J Comp Neurol 371:116–128

    Article  PubMed  Google Scholar 

  210. Mangiavacchi S et al (2001) Long-term behavioral and neurochemical effects of chronic stress exposure in rats. J Neurochem 79:1113–1121

    Article  PubMed  CAS  Google Scholar 

  211. McEwen BS et al (1993) Antidepressant modulation of isolation and restraint stress effects on brain chemistry and morphology. Eur Psychiatry 8(Suppl 2):S41–48

    Google Scholar 

  212. Connor TJ et al (1999) Stressor-induced alterations in serotonergic activity in an animal model of depression. Neuroreport 10:523–528

    Article  PubMed  CAS  Google Scholar 

  213. Boggiano MM et al (2005) Combined dieting and stress evoke exaggerated responses to opioids in binge-eating rats. Behav Neurosci 119:1207–1214

    Article  PubMed  CAS  Google Scholar 

  214. Chandler-Laney PC et al (2007) A history of human-like dieting alters serotonergic control of feeding and neurochemical balance in a rat model of binge-eating. Int J Eat Disord 40:136–142

    Article  PubMed  Google Scholar 

  215. Hagan MM et al (2003) The role of palatable food and hunger as trigger factors in an animal model of stress induced binge eating. Int J Eat Disord 34:183–197

    Article  PubMed  Google Scholar 

  216. Sahakian BJ et al (1982) Hyperactivity and obesity: the interaction of social isolation and cafeteria feeding. Physiol Behav 28:117–124

    Article  PubMed  CAS  Google Scholar 

  217. Varlinskaya EI, Spear LP (2008) Social interactions in adolescent and adult Sprague- Dawley rats: Impact of social deprivation and test context familiarity. Behav Brain Res 188:398–405

    Article  PubMed  Google Scholar 

  218. Krolow R et al (2010) Consumption of a palatable diet by chronically stressed rats prevents effects on anxiety-like behavior but increases oxidative stress in a sex-specific manner. Appetite 55:108–116

    Article  PubMed  CAS  Google Scholar 

  219. Lowry CA et al (2009) Fluoxetine inhibits corticotropin-releasing factor (CRF)- induced behavioural responses in rats. Stress 12:225–239

    Article  PubMed  CAS  Google Scholar 

  220. Paul ED et al (2011) Repeated social defeat increases reactive emotional coping behavior and alters functional responses in serotonergic neurons in the rat dorsal raphe nucleus. Physiol Behav 104:272–282

    Article  PubMed  CAS  Google Scholar 

  221. Dube L, LeBel JL, Lu J (2005) Affect asymmetry and comfort food consumption. Physiol Behav 86:559–567

    Article  PubMed  CAS  Google Scholar 

  222. Ulrich-Lai YM et al (2007) Daily limited access to sweetened drink attenuates hypothalamic-pituitary-adrenocortical axis stress responses. Endocrinology 148:1823–1834

    Article  PubMed  CAS  Google Scholar 

  223. Hall FS et al (1998) The effects of social isolation on the forced swim test in Fawn hooded and Wistar rats. J Neurosci Methods 79:47–51

    Article  PubMed  CAS  Google Scholar 

  224. Hall FS et al (2001) Enhanced corticosterone release after a modified forced swim test in Fawn hooded rats is independent of rearing experience. Pharmacol Biochem Behav 69:629–634

    Article  PubMed  CAS  Google Scholar 

  225. Hirschfeld R, Weissmann M (2002) Secondary risk factors for major depression and bipolar disorder. In: Davis KL, Charney D, Coyl JT, Nemeroff CB (eds) Neuropsycho­pharmacology: the fifth generation of progress. Lippincott Williams & Wilkin, Philadelphia, pp 1018–1025

    Google Scholar 

  226. Anisman H, Matheson K (2005) Stress, depression, and anhedonia: caveats concerning animal models. Neurosci Biobehav Rev 29:525–546

    Article  PubMed  Google Scholar 

  227. Ge X et al (1994) Trajectories of stressful life events and depressive symptoms during adolescence. Dev Psychol 30:467–483

    Article  Google Scholar 

  228. Wagner BM, Compas BE (1990) Gender, instrumentality, and expressivity: moderators of the relation between stress and psychological symptoms during adolescence. Am J Commun Psychol 18:383–406

    Article  CAS  Google Scholar 

  229. Johnston AL, File SE (1991) Sex differences in animal tests of anxiety. Physiol Behav 49:245–250

    Article  PubMed  CAS  Google Scholar 

  230. Lucion AB et al (1996) Influence of early postnatal gonadal hormones on anxiety in adult male rats. Physiol Behav 60:1419–1423

    Article  PubMed  CAS  Google Scholar 

  231. Weiss IC et al (2001) Early social isolation, but not maternal separation, affects behavioral sensitization to amphetamine in male and female adult rats. Pharmacol Biochem Behav 70:397–409

    Article  PubMed  CAS  Google Scholar 

  232. Striegel-Moore RH, Silberstein LR, Rodin J (1993) The social self in bulimia nervosa: public self-consciousness, social anxiety and perceived fraudulence. J Abnorm Psychol 102:297–303

    Article  PubMed  CAS  Google Scholar 

  233. Schutz HK, Paxton SJ (2007) Friendship quality, body dissatisfaction, dieting and disordered eating in adolescent girls. Br J Clin Psychol 46:67–83

    Article  PubMed  Google Scholar 

  234. Kenardy J, Brown WJ, Vogt E (2001) Dieting and health in young Australian women. Eur Eat Disord Rev 9:242–254

    Article  Google Scholar 

  235. Paxton SJ et al (1999) Friendship clique and peer influences on body image attitudes, dietary restraint, extreme weight loss behaviours and binge eating in adolescent girls. J Abnorm Psychol 108:255–266

    Article  PubMed  CAS  Google Scholar 

  236. Falkner NH, Neumark-Sztainer D, Story M (2001) Social, educational, and psychological correlates of weight status in adolescents. Obes Res 9:32–42

    Article  PubMed  CAS  Google Scholar 

  237. Pine DS et al (1997) Psychiatric symptoms of adolescence as predictors of obesity in early adulthood: a longitudinal study. Am J Public Health 7:1303–1310

    Article  Google Scholar 

  238. Corwin RL, Buda-Levin A (2004) Behavioral models of binge-type eating. Physiol Behav 82:123–130

    Article  PubMed  CAS  Google Scholar 

  239. Corwin RL et al (1998) Limited access to a dietary fat option affects ingestive behavior but not body composition in male rats. Physiol Behav 65:545–553

    Article  PubMed  CAS  Google Scholar 

  240. Marcus MD, Kalarchian MA (2003) Binge eating in children and adolescents. Int J Eat Disord 34(Suppl):S47–57

    Article  PubMed  Google Scholar 

  241. Birketvedt GS et al (2006) Bulimia nervosa-a primary defect in the hypothalamic- pituitary-adrenal axis? Appetite 46:164–167

    Article  PubMed  CAS  Google Scholar 

  242. Diaz-Marsa M et al (2007) Findings with 0.25 mg dexamethasone suppression test in eating disorders: association with childhood trauma. CNS Spectr 12:675–680

    PubMed  Google Scholar 

  243. Polivy J (1996) Psychological consequences of food restriction. J Am Diet Assoc 96:589–592

    Article  PubMed  CAS  Google Scholar 

  244. Rorty M, Yager J, Rossotto E (1994) Childhood sexual, physical, and psychological abuse in bulimia nervosa. Am J Psychiatry 151:1122–1126

    PubMed  CAS  Google Scholar 

  245. Grilo CM, Masheb M (2001) Childhood psychological, physical, and sexual maltreatment in outpatients with binge eating disorder: frequency and associations with gender, obesity, and eating-related psychopathology. Obes Res 9:320–325

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant from the Brain Research Center of the Twenty-first Century Frontier Research Program (2009 K001269) funded by the Korea Government (Ministry of Education, Science and Technology).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeong Won Jahng PH.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Jahng, J.W. (2013). Stressful Experiences in Early Life and Subsequent Food Intake. In: Avena, N. (eds) Animal Models of Eating Disorders. Neuromethods, vol 74. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-104-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-104-2_9

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-103-5

  • Online ISBN: 978-1-62703-104-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics