Skip to main content

Binge Eating in Female Rats Induced by Yo-Yo Dieting and Stress

  • Protocol
  • First Online:

Part of the book series: Neuromethods ((NM,volume 74))

Abstract

Preclinical models are needed to investigate the neuro- and psycho-biology of binge eating (BE) and to identify innovative pharmacotherapeutic strategies. A new model, based on the combination of cyclic caloric restriction and acute stress, has been recently developed in our laboratory to induce BE of highly palatable food (HPF) in female rats. Rats were exposed to three cycles of food restriction/refeeding and then stressed on the test day. Acute stress was elicited by exposing rats to HPF, but preventing them from accessing it for 15 min. This experimental procedure induces a marked binge-type intake of HPF. Interestingly, in this model BE does not occur during the estrus phase of the ovarian cycle; if data from female rats in estrus are not included in the statistical analysis, the variability of the BE response is very low. Topiramate, sibutramine, and fluoxetine potently inhibited HPF intake in this model, providing evidence for its predictive validity. The model has been used to investigate the effect of drugs targeting stress mechanisms. The corticotrophin-releasing factor (CRF)-1 receptor antagonist R121919 selectively inhibited BE, indicating that CRF is involved in the BE response. Its effect is likely exerted in extra-hypothalamic sites rather than in hypothalamic sites controlling the hypothalamic–pituitary–adrenal axis. In addition, orexin-1 receptor antagonists selectivity inhibit BE; studies are under way to evaluate whether their effects are related to influences on stress or on reward mechanisms. This preclinical model appears to be highly reliable and reproducible; it may represent a valid model to identify novel pharmacological treatments of BE disorder and bulimia nervosa.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. American Psychiatric Association (2000) Diagnostic and statistic manual of mental disorders, IV-TR. American Psychiatric Association, Washington, DC

    Google Scholar 

  2. Walsh BT, Devlin MJ (1998) Eating disorders: progress and problems. Science 280:1387–1390

    Article  PubMed  CAS  Google Scholar 

  3. Stunkard AJ (1959) Eating patterns and obesity. Psychiatr Q 33:284–295

    Article  PubMed  CAS  Google Scholar 

  4. Hudson JI et al (2007) The prevalence and correlates of eating disorders in the National Comorbidity Survey Replication. Biol Psychiatry 61:348–358

    Article  PubMed  Google Scholar 

  5. Fassino S et al (2003) Mood, eating attitudes, and anger in obese women with and without Binge Eating Disorder. J Psychosom Res 54:559–566

    Article  PubMed  Google Scholar 

  6. Grucza RA, Przybeck TR, Cloninger CR (2007) Prevalence and correlates of binge eating disorder in a community sample. Compr Psychiatry 48:124–131

    Article  PubMed  Google Scholar 

  7. Javaras KN et al (2008) Co-occurrence of binge eating disorder with psychiatric and medical disorders. J Clin Psychiatry 69:266–273

    Article  PubMed  Google Scholar 

  8. Foulds MW et al (2009) The biology of binge eating. Appetite 52:545–553

    Article  CAS  Google Scholar 

  9. Heath AC (1998) Binge-eating and bulimia: potential insights into etiology and pathophysiology through genetic epidemiologic studies. Biol Psychiatry 44:1208–1209

    Article  PubMed  CAS  Google Scholar 

  10. Devlin MJ, Yanovski SZ, Wilson GT (2000) Obesity: what mental health professionals need to know. Am J Psychiatry 157:854–866

    Article  PubMed  CAS  Google Scholar 

  11. Yanovski SZ (2003) Binge eating disorder and obesity in 2003: could treating an eating disorder have a positive effect on the obesity epidemic? Int J Eat Disord 34:S117–S120

    Article  PubMed  Google Scholar 

  12. McElroy SL et al (2007) Topiramate for the treatment of binge eating disorder associated with obesity: a placebo-controlled study. Biol Psychiatry 61:1039–1048

    Article  PubMed  CAS  Google Scholar 

  13. McElroy SL et al (2009) Role of antiepileptic drugs in the management of eating disorders. CNS Drugs 23:139–156

    Article  PubMed  CAS  Google Scholar 

  14. Appolinario JC et al (2002) An open-label trial of sibutramine in obese patients with binge-eating disorder. J Clin Psychiatry 63:28–30

    Article  PubMed  CAS  Google Scholar 

  15. Appolinario JC, McElroy SL (2004) Pharmacological approaches in the treatment of binge eating disorders. Curr Drug Targets 5:301–307

    Article  PubMed  CAS  Google Scholar 

  16. Wilfley DE et al (2008) Sibutramine Eating Disorder Research Group. Efficacy of sibutramine for the treatment of binge eating disorder: a randomized multicenter placebo-controlled double-blind study. Am J Psychiatry 165:51–58

    Article  PubMed  Google Scholar 

  17. Carter WP et al (2003) Pharmacologic treatment of binge eating disorder. Int J Eat Disord 34:S74–S88

    Article  PubMed  Google Scholar 

  18. Yager J (2008) Binge eating disorder: the search for better treatments. Am J Psychiatry 165:4–6

    Article  PubMed  Google Scholar 

  19. DRUGDEX® System (2010) Thomson Reuters (Healthcare) Inc, Greenwood Village, CO, USA

    Google Scholar 

  20. Corwin RL, Buda-Levin A (2004) Behavioral models of binge-type eating. Physiol Behav 82:123–130

    Article  PubMed  CAS  Google Scholar 

  21. Wardle J et al (2000) Stress, dietary restraint and food intake. J Psychosom Res 48:195–202

    Article  PubMed  CAS  Google Scholar 

  22. Freeman LM, Gil KM (2004) Daily stress, coping, and dietary restraint in binge eating. Int J Eat Disord 36:204–212

    Article  PubMed  Google Scholar 

  23. Polivy J et al (1994) Food restriction and binge eating: a study of former prisoner of war. J Abnorm Psychol 103:409–411

    Article  PubMed  CAS  Google Scholar 

  24. Waters A, Hill A, Waller G (2001) Internal and external antecedents of binge eating episodes in a group of women with bulimia nervosa. Int J Eat Disord 29:17–22

    Article  PubMed  CAS  Google Scholar 

  25. Wolff GE et al (2000) Differences in daily stress, mood, coping, and eating behavior in binge eating and nonbinge eating college women. Addict Behav 25:205–216

    Article  PubMed  CAS  Google Scholar 

  26. Stice E et al (2001) Subtyping binge eating-disordered women along dieting and negative affect dimensions. Int J Eat Disord 30:11–27

    Article  PubMed  CAS  Google Scholar 

  27. Crowther JH et al (2001) The role of daily hassles in binge eating. Int J Eat Disord 29:449–454

    Article  PubMed  CAS  Google Scholar 

  28. Weltzin TE et al (1991) Feeding pattern in bulimia nervosa. Biol Psychiatry 30:1093–1110

    Article  PubMed  CAS  Google Scholar 

  29. Hagan MM, Moss DE (1997) Persistence of binge-eating patterns after a history of restriction with intermittent bouts of refeeding on palatable food in rats: implications for bulimia nervosa. Int J Eat Disord 22:411–420

    Article  PubMed  CAS  Google Scholar 

  30. Leigh AJ et al (1998) Diet-induced loss of cyclic ovarian function at normal body weight in a rodent model for bulimia nervosa. J Reprod Fertil 112:217–223

    Article  PubMed  CAS  Google Scholar 

  31. Hagan MM et al (2002) A new animal model of binge-eating: key synergistic role of past caloric restriction and stress. Physiol Behav 77:45–54

    Article  PubMed  CAS  Google Scholar 

  32. Hagan MM et al (2003) The role of palatable food and hunger as trigger factors in an animal model of stress-induced binge eating. Int J Eat Disord 34:183–197

    Article  PubMed  Google Scholar 

  33. Artiga AI et al (2007) Body composition and endocrine status of long-term stress-induced binge eating rats. Physiol Behav 91:424–431

    Article  PubMed  CAS  Google Scholar 

  34. Abraham SF, Beumont PJV (1982) How patients describe bulimia or binge eating. Psychol Med 12:625–635

    Article  PubMed  CAS  Google Scholar 

  35. Spitzer RL et al (1993) Binge eating disorder: its further validation in a multisite study. Int J Eat Disord 13:137–153

    Article  PubMed  CAS  Google Scholar 

  36. Spitzer RL et al (1993) Binge eating disorder should be included in DSM-IV: a reply to Fairburn et al’.s “the classification of recurrent overeating: the binge eating disorder proposal”. Int J Eat Disord 13:161–169

    Article  PubMed  CAS  Google Scholar 

  37. Kjelsas E, Bjornstrom C, Gotestam KG (2004) Prevalence of eating disorders in female and male adolescents (14–15 years). Eat Behav 5:13–25

    Article  PubMed  Google Scholar 

  38. Smith GP (1989) Animal models of human eating disorders. Ann NY Acad Sci 575:63–72

    Article  PubMed  CAS  Google Scholar 

  39. Cifani C et al (2009) A preclinical model of binge-eating elicited by yo-yo dieting and stressful exposure to food: effect of sibutramine, fluoxetine, topiramate and midazolam. Psychopharmacology 204:113–125

    Article  PubMed  CAS  Google Scholar 

  40. Hansson AC et al (2006) Variation at the rat Crhr1 locus and sensitivity to relapse into alcohol seeking induced by environmental stress. Proc Natl Acad Sci USA 103:15236–15241

    Article  PubMed  CAS  Google Scholar 

  41. Ciccocioppo R et al (2001) Nociceptin/orphanin FQ inhibits stress- and CRF-induced anorexia in rats. NeuroReport 12:1145–1149

    Article  PubMed  CAS  Google Scholar 

  42. Sterritt GM (1962) Inhibition and facilitation of eating by electric shock. J Comp Physiol Psychol 55:226–229

    Article  PubMed  CAS  Google Scholar 

  43. Robbins TW, Fray PJ (1980) Stress-induced eating: fact, fiction or misunderstanding? Appetite 1:103–133

    Article  Google Scholar 

  44. Lyons PM et al (1989) Reduction of food intake in the ovulatory phase of the menstrual cycle. Am J Clin Nutr 49:1164–1168

    PubMed  CAS  Google Scholar 

  45. Gong EJ, Garrel D, Calloway DH (1989) Menstrual cycle and voluntary food intake. Am J Clin Nutr 49:252–258

    PubMed  CAS  Google Scholar 

  46. Buffenstein R et al (1995) Food-intake and menstrual-cycle: a retrospective analysis, with implication for appetite research. Physiol Behav 58:1067–1077

    Article  PubMed  CAS  Google Scholar 

  47. Dye L, Blundell JE (1997) Menstrual cycle and appetite control: implications for weight regulation. Hum Reprod 12:1142–1151

    Article  PubMed  CAS  Google Scholar 

  48. Gladis MM, Walsh BT (1987) Premenstrual exacerbation of binge eating in bulimia. Am J Psychiatry 144:1592–1595

    PubMed  CAS  Google Scholar 

  49. Price WA, Torem MS, DiMarzio LR (1987) Premenstrual exacerbation of bulimia. Psychosomatics 28:378–379

    Article  PubMed  CAS  Google Scholar 

  50. Lester NA, Keel PK, Lipson SF (2003) Symptom fluctuation in bulimia nervosa: relation to menstrual-cycle phase and cortisol levels. Psychol Med 33:51–60

    Article  PubMed  CAS  Google Scholar 

  51. Edler C, Lipson SF, Keel PK (2007) Ovarian hormones and binge eating in bulimia nervosa. Psychol Med 37:131–141

    Article  PubMed  Google Scholar 

  52. Klump KL et al (2008) Ovarian hormones and binge eating: exploring associations in community samples. Psychol Med 38:1749–1757

    Article  PubMed  CAS  Google Scholar 

  53. Smith GP, Gibbs J (1992) The development and proof of the CCK hypothesis of satiety. In: Dourish CT, Cooper SJ, Iversen SD et al (eds) Multiple cholecystokinin receptors in the CNS. Oxford University Press, Oxford, pp 166–182

    Google Scholar 

  54. Butera PC, Bradway DM, Cataldo NJ (1993) Modulation of the satiety effect of cholecystokinin by estradiol. Physiol Behav 53:1235–1238

    Article  PubMed  CAS  Google Scholar 

  55. Eckel LA, Geary N (1999) Endogenous cholecystokinin’s satiating action increases during estrous in female rats. Peptides 20:451–456

    Article  PubMed  CAS  Google Scholar 

  56. Geary N et al (1994) Cyclic estradiol replacement increases the satiety effect of CCK-8 in ovariectomized rats. Physiol Behav 56:281–289

    Article  PubMed  CAS  Google Scholar 

  57. Geary N (2004) Endocrine controls of eating: CCK, leptin, and ghrelin. Physiol Behav 81:719–733

    Article  PubMed  CAS  Google Scholar 

  58. Thammacharoen S et al (2009) Divergent effects of estradiol and the estrogen receptor-alpha agonist PPT on eating and activation of PVN CRH neurons in ovariectomized rats and mice. Brain Res 1268:88–96

    Article  PubMed  CAS  Google Scholar 

  59. Clegg DJ et al (2006) Gonadal hormones determine sensitivity to central leptin and insulin. Diabetes 55:978–987

    Article  PubMed  CAS  Google Scholar 

  60. Bauer-Dantoin AC, Urban JH, Levine JE (1992) Neuropeptide Y gene expression in the arcuate nucleus is increased during preovulatory luteinizing hormone surges. Endocrinology 131:2953–2958

    Article  PubMed  CAS  Google Scholar 

  61. Bonavera JJ et al (1994) Anorectic effects of estrogen may be mediated by decreased neuropeptide Y release in the hypothalamic paraventricular nucleus. Endocrinology 134:2367–2370

    Article  PubMed  CAS  Google Scholar 

  62. Santollo J, Eckel LA (2008) Estradiol decreases the orexigenic effect of neuropeptide Y, but not agouti-related protein, in ovariectomized rats. Physiol Behav 191:173–177

    CAS  Google Scholar 

  63. Clegg DJ et al (2007) Estradiol-dependent decrease in the orexigenic potency of ghrelin in female rats. Diabetes 56:1051–1058

    Article  PubMed  CAS  Google Scholar 

  64. Clough SJ (2009) Effects of ghrelin on spontaneous food intake during the rat ovarian cycle. Unpublished Honors Thesis, Department of Biochemistry, Niagara University

    Google Scholar 

  65. Butera PC (2010) Estradiol and the control of food intake. Physiol Behav 99:175–180

    Article  PubMed  CAS  Google Scholar 

  66. Morton GJ et al (2004) Increased hypothalamic melanin concentrating hormone gene expression during energy restriction involves a melanocortin-independent, estrogen-sensitive mechanism. Peptides 25:667–674

    Article  PubMed  CAS  Google Scholar 

  67. Messina MM et al (2006) Eckel LA Estradiol decreases the orexigenic effect of melanin-concentrating hormone in ovariectomized rats. Physiol Behav 88:523–528

    Article  PubMed  CAS  Google Scholar 

  68. Hildebrandt T et al (2010) Conceptualizing the role of estrogens and serotonin in the development and maintenance of bulimia nervosa. Clin Psychol Rev 30:655–668

    Article  PubMed  Google Scholar 

  69. Alyea RA, Watson CS (2009) Differential regulation of dopamine transporter function and location by low concentrations of environmental estrogens and 17 beta-estradiol. Environ Health Perspect 117:778–783

    Article  PubMed  CAS  Google Scholar 

  70. Freeman ME (1994) The neuroendocrine control of the ovarian cycle of the rat. In: Knobil E, Neill JD (eds) The physiology of reproduction, 2nd edn. Raven, New York, pp 613–658

    Google Scholar 

  71. Geary N (2004) The estrogenic inhibition of eating. In: Stricker EM, Woods SC (eds) Handbook of behavioral neurobiology, vol 14, 2nd edn, Neurobiology of food and fluid intake. Kluwer, New York, pp 307–345

    Google Scholar 

  72. Asarian L, Geary N (2006) Modulation of appetite by gonadal steroid hormones. Philos Trans R Soc Lond B Biol Sci 361:1251–1263

    Article  PubMed  CAS  Google Scholar 

  73. Asarian L, Geary N (2002) Cyclic estradiol treatment normalizes body weight and restores physiological pattern of spontaneous feeding and sexual receptivity in ovariectomized rats. Horm Behav 42:461–471

    Article  PubMed  CAS  Google Scholar 

  74. Drewett RF (1974) The meal patterns of the oestrous cycle and their motivational significance. Q J Exp Psychol 26:489–494

    Article  PubMed  CAS  Google Scholar 

  75. Blaustein JD, Wade GN (1976) Ovarian influences on the meal patterns of female rats. Physiol Behav 17:201–208

    Article  PubMed  CAS  Google Scholar 

  76. Geary N, Asarian L (1999) Cyclic estradiol treatment normalizes body weight and test meal size in ovariectomized rats. Physiol Behav 67:141–147

    Article  PubMed  CAS  Google Scholar 

  77. Matelski H et al (1985) Randomized trial of estrogen vs. tamoxifen therapy for advanced breast cancer. Am J Clin Oncol 8:128–133

    Article  PubMed  CAS  Google Scholar 

  78. Kuiper GG et al (1996) Cloning of a novel receptor expressed in rat prostate and ovary. Proc Natl Acad Sci USA 93:5925–5930

    Article  PubMed  CAS  Google Scholar 

  79. Heine PA et al (2000) Increased adipose tissue in male and female estrogen receptor-alpha knockout mice. Proc Natl Acad Sci USA 97:12729–12734

    Article  PubMed  CAS  Google Scholar 

  80. Wade GN, Zucker I (1970) Modulation of food intake and locomotor activity in female rats by diencephalic hormone implants. J Comp Physiol Psychol 72:328–338

    Article  PubMed  CAS  Google Scholar 

  81. Yu Z, Geary N, Corwin RL (2011) Individual effects of estradiol and progesterone on food intake and body weight in ovariectomized binge rats. Physiol Behav 104:687–693

    Article  PubMed  CAS  Google Scholar 

  82. Micioni Di Bonaventura MV et al (2010) Influence of the ovarian cycle on binge eating evoked in female rats by stress and food restriction. Appetite 54:663

    Google Scholar 

  83. De Bernardi C et al (2005) Topiramate for binge eating disorder. Progr Neuropsychopharmacol Biol Psychiatry 29:339–341

    Article  CAS  Google Scholar 

  84. Milano W et al (2005) Use of sibutramine, an inhibitor of the reuptake of serotonin and noradrenaline, in the treatment of binge eating disorder: a placebo-controlled study. Adv Ther 22:25–31

    Article  PubMed  CAS  Google Scholar 

  85. Leombruni P et al (2008) A randomized, double-blind trial comparing sertraline and fluoxetine 6-month treatment in obese patients with Binge Eating Disorder. Progr Neuropsychopharmacol Biol Psychiatry 32:1599–1505

    Article  CAS  Google Scholar 

  86. Shapiro JR et al (2007) Bulimia nervosa treatment: a systematic review of randomized controlled trials. Int J Eat Disord 40:321–336

    Article  PubMed  Google Scholar 

  87. Arnold LM et al (2002) A placebo-controlled, randomized trial of fluoxetine in the treatment of binge-eating disorder. J Clin Psychiatry 63:1028–1033

    Article  PubMed  CAS  Google Scholar 

  88. National Institute for Clinical Excellence (2004) Eating disorders—core interventions in the treatment and management of anorexia nervosa, bulimia nervosa, and related eating disorders. National Institute for Clinical Excellence, London

    Google Scholar 

  89. Padwal RS, Majumdar SR (2007) Drug treatments for obesity: orlistat, sibutramine and rimonabant. Lancet 369:71–77

    Article  PubMed  CAS  Google Scholar 

  90. Gluck ME et al (2004) Cortisol, hunger, and desire to binge eat following a cold stress test in obese women with binge eating disorder. Psychosom Med 66:876–881

    Article  PubMed  CAS  Google Scholar 

  91. Gluck ME, Geliebter A, Lorence M (2004) Cortisol stress response is positively correlated with central obesity in obese women with binge eating disorder (BED) before and after cognitive-behavioral treatment. Ann NY Acad Sci 1032:202–207

    Article  PubMed  CAS  Google Scholar 

  92. Coutinho WF et al (2007) Does binge eating disorder alter cortisol secretion in obese women? Eat Behav 8:59–64

    Article  PubMed  Google Scholar 

  93. Epel E et al (2001) Stress may add bite to appetite in women: a laboratory study of stress-induced cortisol and eating behavior. Psychoneuroendocrinology 26:37–49

    Article  PubMed  CAS  Google Scholar 

  94. Turnbull AV, Rivier C (1997) Corticotropin-releasing factor (CRF) and endocrine responses to stress: CRF receptors, binding protein, and related peptides. Proc Soc Exp Biol Med 215:1–10

    PubMed  CAS  Google Scholar 

  95. Koob GF (2008) A role for brain stress systems in addiction. Neuron 59:11–34

    Article  PubMed  CAS  Google Scholar 

  96. Erb S, Shaham Y, Stewart J (1998) The role of corticotropin-releasing factor and corticosterone in stress- and cocaine-induced relapse to cocaine seeking in rats. J Neurosci 18:5529–5536

    PubMed  CAS  Google Scholar 

  97. Le AD et al (2000) The role of corticotrophin-releasing factor in stress-induced relapse to alcohol-seeking behavior in rats. Psychopharmacology (Berl) 150:317–324

    Article  CAS  Google Scholar 

  98. Lu L, Liu D, Ceng X (2001) Corticotropin-releasing factor receptor type 1 mediates stress-induced relapse to cocaine-conditioned place preference in rats. Eur J Pharmacol 415:203–208

    Article  PubMed  CAS  Google Scholar 

  99. Liu X, Weiss F (2002) Additive effect of stress and drug cues on reinstatement of ethanol seeking: exacerbation by history of dependence and role of concurrent activation of corticotropin-releasing factor and opioid mechanisms. J Neurosci 22:7856–7861

    PubMed  CAS  Google Scholar 

  100. Shaham Y et al (1997) Corticotropin-releasing factor, but not corticosterone, is involved in stress-induced relapse to heroin-seeking in rats. J Neurosci 17:2605–2614

    PubMed  CAS  Google Scholar 

  101. Shaham Y et al (1998) CP-154,526, a selective, non-peptide antagonist of the corticotropin-releasing factor-1 receptor attenuates stress-induced relapse to drug seeking in cocaine-and heroin-trained rats. Psychopharmacology 137:184–190

    Article  PubMed  CAS  Google Scholar 

  102. Shalev U et al (2006) A role for corticotropin-releasing factor, but not corticosterone, in acute food deprivation-induced reinstatement of heroin seeking in rats. Psychopharmacology (Berl) 187:376–384

    Article  CAS  Google Scholar 

  103. Erb S, Stewart J (1999) A role for the bed nucleus of the stria terminalis, but not the amygdala, in the effects of corticotropin-releasing factor on stress-induced reinstatement of cocaine seeking. J Neurosci 19:RC35

    Google Scholar 

  104. Erb S et al (2001) A role for the CRF-containing pathway from central nucleus of the amygdala to bed nucleus of the stria terminalis in the stress-induced reinstatement of cocaine seeking in rats. Psychopharmacology 158:360–365

    Article  PubMed  CAS  Google Scholar 

  105. Le AD et al (2002) The role of corticotropin-releasing factor in the median raphe nucleus in relapse to alcohol. J Neurosci 22:7844–7849

    PubMed  CAS  Google Scholar 

  106. Wang J et al (2006) Region-specific effects of brain corticotropin-releasing factor receptor type 1 blockade on footshock-stress or drug-priming-induced reinstatement of morphine conditioned place preference in rats. Psychopharmacology 185:19–28

    Article  PubMed  CAS  Google Scholar 

  107. Ghitza UE et al (2006) The anxiogenic drug yohimbine reinstates palatable food seeking in a rat relapse model: a role of CRF(1) receptors. Neuropsychopharmacology 31:2188–2196

    PubMed  CAS  Google Scholar 

  108. Cottone P et al (2009) CRF system recruitment mediates dark side of compulsive eating. Proc Natl Acad Sci USA 106:20016–20020

    PubMed  CAS  Google Scholar 

  109. Kopf S et al (2006) Ghrelin is involved in stress-induced binge eating in rats exposed to yo-yo dieting. FENS Abstr 3:A203.6

    Google Scholar 

  110. Kinzig KP, Hargrave SL, Honors MA (2008) Binge-type eating attenuates corticosterone and hypophagic responses to restraint stress. Physiol Behav 95:108–113

    Article  PubMed  CAS  Google Scholar 

  111. Christiansen AM et al (2011) “Snacking” causes long term attenuation of HPA axis stress responses and enhancement of brain FosB deltaFosB expression in rats. Physiol Behav 103:111–116

    Article  PubMed  CAS  Google Scholar 

  112. Pecoraro N et al (2004) Chronic stress promotes palatable feeding, which reduces signs of stress: feedforward and feedback effects of chronic stress. Endocrinology 145:3754–3762

    Article  PubMed  CAS  Google Scholar 

  113. Teegarden SL, Bale TL (2007) Decreases in dietary preference produce increased emotionality and risk for dietary relapse. Biol Psychiatry 61:1021–1029

    Article  PubMed  Google Scholar 

  114. Nava F et al (2006) Relationship between plasma cortisol levels, withdrawal symptoms and craving in abstinent and treated heroin addicts. J Addict Dis 25:9–16

    Article  PubMed  Google Scholar 

  115. Piazza PV et al (1993) Corticosterone in the range of stress-induced levels possesses reinforcing properties: implications for sensation-seeking behaviors. Proc Natl Acad Sci USA 90:11738–11742

    Article  PubMed  CAS  Google Scholar 

  116. Dellu F et al (1996) Novelty-seeking in rats-biobehavioral characteristics and possible relationship with the sensation-seeking trait in man. Neuropsychobiology 34:136–145

    Article  PubMed  CAS  Google Scholar 

  117. Mantsch JR, Saphier D, Goeders NE (1998) Corticosterone facilitates the acquisition of cocaine self-administration in rats: opposite effects of the type II glucocorticoid receptor agonist dexamethasone. J Pharmacol Exp Ther 287:72–80

    PubMed  CAS  Google Scholar 

  118. Shalev U et al (2003) The role of corticosterone in food deprivation-induced reinstatement of cocaine seeking in the rat. Psychopharmacology 168:170–176

    Article  PubMed  CAS  Google Scholar 

  119. Dallman MF, Pecoraro NC, la Fleur SE (2005) Chronic stress and comfort foods: self-medication and abdominal obesity. Brain Behav Immun 19:275–280

    Article  PubMed  Google Scholar 

  120. Rougé-Pont F et al (1998) Individual differences in stress induced dopamine release in the nucleus accumbens are influenced by corticosterone. Eur J Neurosci 10:3903–3907

    Article  PubMed  Google Scholar 

  121. Marinelli M, Piazza PV (2002) Interaction between glucocorticoid hormones, stress and psychostimulant drugs. Eur J Neurosci 16:387–394

    Article  PubMed  Google Scholar 

  122. Micioni Di Bonaventura MV et al (2011) Effect of the CRF-1 receptor antagonist R121919 on binge eating. Appetite 57S:S30

    Google Scholar 

  123. Jutkiewicz EM et al (2005) The effects of CRF antagonists, antalarmin, CP154,526, LWH234, and R121919, in the forced swim test and on swim-induced increases in adrenocorticotropin in rats. Psychopharma­cology 180:215–223

    Article  PubMed  CAS  Google Scholar 

  124. Gutman DA et al (2008) Behavioral effects of the CRF1 receptor antagonist R121919 in rats selectively bred for high and low activity in the swim test. Psychoneuroendocrinology 33:1093–1101

    Article  PubMed  CAS  Google Scholar 

  125. Gutman DA et al (2011) Persistent anxiolytic affects after chronic administration of the CRF1 receptor antagonist R121919 in rats. Neuropharmacology 60:1135–1141

    Article  PubMed  CAS  Google Scholar 

  126. Swanson LW, Simmons DM (1989) Differential steroid hormone and neural influences on peptide mRNA levels in CHR cells on the paraventricular nucleus: a hybridization histochemical study in the rat. J Comp Neurol 285:413–425

    Article  PubMed  CAS  Google Scholar 

  127. Imaki T et al (1991) Differential regulation of corticotrophin-releasing factor mRNA in rat brain regions by glucocorticoids and stress. J Neurosci 11:585–599

    PubMed  CAS  Google Scholar 

  128. Makino S, Gold PW, Schulkin J (1994) Corticosterone effects on corticotrophin-releasing hormone mRNA in the central nucleus of the amygadala and the parvocellular region of the paraventricular nucleus of the hypothalamus. Brain Res 640:105–112

    Article  PubMed  CAS  Google Scholar 

  129. Schulkin J, McEwen BS, Gold PW (1994) Allostasis, amygdala and anticipatory angst. Neurosci Biobehav Rev 18:385–396

    Article  PubMed  CAS  Google Scholar 

  130. Shepard JD, Barron KW, Myers DA (2000) Corticosterone delivery to the amygdala increases corticotrophin-releasing factor mRNA in the central amygdaloid nucleus and anxiety-like behavior. Brain Res 861:288–295

    Article  PubMed  CAS  Google Scholar 

  131. Kreek MJ, Koob GF (1998) Drug dependence: stress and dysregulation of brain reward pathways. Drug Alcohol Depend 51:23–47

    Article  PubMed  CAS  Google Scholar 

  132. Koob GF, Le Moal M (2005) Plasticity of reward neurocircuitry and the “dark side” of drug addiction. Nat Neurosci 8:1442–1444

    Article  PubMed  CAS  Google Scholar 

  133. Koob GF, Kreek MJ (2007) Stress, dysregulation of drug reward pathways, and the transition to drug dependence. Am J Psychiatry 164:1149–1159

    Article  PubMed  Google Scholar 

  134. Heimer L, Alheid G (1991) Piecing together the puzzle of basal forebrain anatomy. In: Napier TC, Kalivas PW, Hanin I (eds) The basal forebrain: anatomy to function. Series title: Advances in experimental medicine and biology, vol. 295. Plenum, New York, pp 1–42

    Google Scholar 

  135. Panossian A, Wagner H (2005) Stimulating effect of adaptogens: an overview with particular reference to their efficacy following single dose administration. Phytother Res 19:819–838

    Article  PubMed  CAS  Google Scholar 

  136. Panossian A, Wikman G (2009) Evidence-based efficacy of adaptogens in fatigue, and molecular mechanisms related to their stress-protective activity. Curr Clin Pharmacol 4:198–219

    Article  PubMed  CAS  Google Scholar 

  137. Mattioli L, Perfumi MC (2007) Rhodiola rosea L. extract reduces stress- and CRF-induced anorexia in rats. J Psychopharmacol 21:742–750

    Article  PubMed  Google Scholar 

  138. Cifani C et al (2010) Effect of salidroside, active principle of Rhodiola rosea extract, on binge eating. Physiol Behav 101:555–562

    Article  PubMed  CAS  Google Scholar 

  139. Sakurai T et al (1998) Orexins and orexin receptors: a family of hypothalamic neuropeptides and G protein-coupled receptors that regulate feeding behavior. Cell 92:573–585

    Article  PubMed  CAS  Google Scholar 

  140. Harris GC, Wimmer M, Aston-Jones G (2005) A role for lateral hypothalamic orexin neurons in reward seeking. Nature 437:556–559

    Article  PubMed  CAS  Google Scholar 

  141. Lawrence AJ et al (2006) The orexin system regulates alcohol-seeking in rats. Br J Pharmacol 148:752–759

    Article  PubMed  CAS  Google Scholar 

  142. Smith RJ, Tahsili-Fahadan P, Aston-Jones G (2010) Orexin/hypocretin is necessary for context-driven cocaine-seeking. Neuro­pharmacology 58:179–184

    Article  PubMed  CAS  Google Scholar 

  143. Haynes AC et al (2000) A selective orexin-1 receptor antagonist reduces food consumption in male and female rats. Regul Pept 96:45–51

    Article  PubMed  CAS  Google Scholar 

  144. Rodgers RJ et al (2001) SB-334867, a selective orexin-1 receptor antagonist, enhances behavioural satiety and blocks the hyperphagic effect of orexin-A in rats. Eur J Neurosci 13:1444–1452

    Article  PubMed  CAS  Google Scholar 

  145. Nair SG, Golden SA, Shaham Y (2008) Differential effects of the hypocretin 1 receptor antagonist SB 334867 on high-fat food self-administration and reinstatement of food seeking in rats. Br J Pharmacol 154:406–416

    Article  PubMed  CAS  Google Scholar 

  146. Harris GC, Aston-Jones G (2006) Arousal and reward: a dichotomy in orexin function. Trends Neurosci 29:571–577

    Article  PubMed  CAS  Google Scholar 

  147. Sakamoto F, Yamada S, Ueta Y (2004) Centrally administered orexin-A activates corticotropin-releasing factor containing neurons in the hypothalamic paraventricular nucleus and central amygdaloid nucleus of rats: possible involvement of central orexins on stress-activated central CRF neurons. Reg Pept 118:183–191

    Article  CAS  Google Scholar 

  148. Boutrel B et al (2005) Role for hypocretin in mediating stress-induced reinstatement of cocaine-seeking behavior. Proc Natl Acad Sci USA 102:19168–19173

    Article  PubMed  CAS  Google Scholar 

  149. Richards JK et al (2008) Inhibition of orexin-1/hypocretin-1 receptors inhibits yohimbine-induced reinstatement of ethanol and sucrose seeking in Long-Evans rats. Psychopharmacology 199:109–117

    Article  PubMed  CAS  Google Scholar 

  150. Borgland SL et al (2006) Orexin A in the VTA is critical for the induction of synaptic plasticity and behavioral sensitization to cocaine. Neuron 49:589–601

    Article  PubMed  CAS  Google Scholar 

  151. Martin-Fardon R et al (2010) Role of innate and drug-induced dysregulation of brain stress and arousal systems in addiction: focus on corticotropin-releasing factor, nociceptin/orphanin FQ, and orexin/hypocretin. Brain Res 1314:145–161

    Article  PubMed  CAS  Google Scholar 

  152. Jupp B et al (2011) The orexin1 receptor antagonist SB-334867 dissociates the motivational properties of alcohol and sucrose in rats. Brain Res 1391:54–59

    Article  PubMed  CAS  Google Scholar 

  153. Bonci A, Borgland S (2009) Role of orexin/hypocretin and CRF in the formation of drug-dependent synaptic plasticity in the mesolimbic system. Neuropharmacology 56(Suppl 1):107–111

    Article  PubMed  CAS  Google Scholar 

  154. Hollander JA et al (2008) Insular hypocretin transmission regulates nicotine reward. Proc Natl Acad Sci USA 105:19480–19485

    Article  PubMed  CAS  Google Scholar 

  155. Gold MS, Frost-Pineda K, Jacobs WS (2003) Overeating, binge eating, and eating disorders as addictions. Psychiatr Ann 33:112–116

    Google Scholar 

  156. Pelchat ML et al (2004) Images of desire: food-craving activation during fMRI. Neuroimage 23:1486–1493

    Article  PubMed  Google Scholar 

  157. Avena NM, Rada P, Hoebel BG (2008) Evidence for sugar addiction: behavioral and neurochemical effects of intermittent, excessive sugar intake. Neurosci Biobehav Rev 32:20–39

    Article  PubMed  CAS  Google Scholar 

  158. Ifland JR et al (2009) Refined food addiction: a classic substance use disorder. Med Hypotheses 72:518–526

    Article  PubMed  CAS  Google Scholar 

  159. Johnson PM, Kenny PJ (2010) Dopamine D2 receptors in addiction-like reward dysfunction and compulsive eating in obese rats. Nat Neurosci 13:635–641

    Article  PubMed  CAS  Google Scholar 

  160. Gearhardt AN, Corbin WR, Brownell KD (2011) Food addiction: an examination of the diagnostic criteria for dependence. J Addict Med 3:1–7

    Article  Google Scholar 

  161. Hoebel BG (1985) Brain neurotransmitters in food and drug reward. Am J Clin Nutr 42(Suppl 5):1133–1150

    PubMed  CAS  Google Scholar 

  162. Volkow ND, Wise RA (2005) How can drug addiction help us understand obesity? Nat Neurosci 8:555–560

    Article  PubMed  CAS  Google Scholar 

  163. Corwin R, Avena NM, Boggiano MM (2011) Feeling and reward: perspective from three rat models of binge eating. Physiol Behav 104:87–97

    Article  PubMed  CAS  Google Scholar 

  164. Gearhardt AN et al (2011) Neural correlates of food addiction. Arch Gen Psychiatry 68:808–816

    Article  PubMed  Google Scholar 

  165. Wang GJ et al (2011) Enhanced striatal dopamine release during food stimulation in binge eating disorder. Obesity 19:1601–1608

    Article  PubMed  CAS  Google Scholar 

  166. Piccoli L et al (2012) Role of orexin-1 receptor mechanisms on compulsive food consumption in a model of binge eating in female rats. Neuropsychopharmacology 37:1999–2011

    Google Scholar 

Download references

Acknowledgements

The authors wish to thank Dr. Kenner Rice for synthesizing R121919, Marino Cucculelli for his skilful technical assistance, and the Editor of the book for her kind invitation to contribute to it.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlo Cifani PH.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Cifani, C., Di Bonaventura, M.V.M., Ciccocioppo, R., Massi, M. (2013). Binge Eating in Female Rats Induced by Yo-Yo Dieting and Stress. In: Avena, N. (eds) Animal Models of Eating Disorders. Neuromethods, vol 74. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-104-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-104-2_3

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-103-5

  • Online ISBN: 978-1-62703-104-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics