Skip to main content

Food Restriction and Reward in Rats

  • Protocol
  • First Online:
Animal Models of Eating Disorders

Part of the book series: Neuromethods ((NM,volume 74))

  • 997 Accesses

Abstract

Food restriction is a defining characteristic of anorexia nervosa and a risk factor for binge pathology. Basic research related to drug addiction indicates that food restriction increases drug reward magnitude, persistence of preference for a drug-paired environment, and relapse to drug seeking. These phenomena suggest that drugs of abuse subvert the adaptive mechanisms that normally facilitate foraging, learning, and ingestion when food is scarce. Similarly, if supranormally rewarding, energy-dense food is abundant but the physiological effects of underfeeding prevail due to restricted intake, the risk of developing maladaptive addiction-like eating behavior may increase. In this chapter, methods are described for assessing neurotransmitter receptor mechanisms and intracellular signaling pathways in the nucleus accumbens (NAc) that contribute to enhanced reward sensitivity in food-restricted rats. These methods combine intracerebral drug microinjection with the curve-shift rate-frequency protocol of intracranial self-stimulation testing. The addition of continuous intraventricular infusion of metabolic hormone or feeding-related neuropeptide receptor ligands is described as a means of assessing peripheral responses that may be antecedents to central nervous system changes of interest. When these studies are guided by biochemical findings in the NAc of food-restricted rats, the approach enables identification of neuroadaptations that increase reward sensitivity and suggests others that may increase synaptic plasticity and ingrain behavior. The goal is to generate a set of defined candidate mechanisms that can be evaluated for their involvement in the development and maintenance of disordered eating.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Attia E, Walsh BT (2007) Anorexia nervosa. Am J Psychiat 164:1805–1810

    Article  PubMed  Google Scholar 

  2. Polivy J, Herman CP (1985) Dieting and bingeing: a causal analysis. Am Psychol 40:193–201

    Article  PubMed  CAS  Google Scholar 

  3. Stice E et al (2008) Fasting increases risk for onset of binge eating and bulimic pathology: a 5-year prospective study. J Abnorm Psychol 117:941–946

    Article  PubMed  Google Scholar 

  4. Zunker C et al (2011) Ecological momentary assessment of bulimia nervosa: does dietary restriction predict binge eating? Behav Res Ther 49:714–717

    Article  PubMed  Google Scholar 

  5. Coelho JS et al (2010) Inaccessible food cues affect stress and weight gain in calorically-restricted and ad lib fed rats. Appetite 54:229–232

    Article  PubMed  Google Scholar 

  6. Hofmann W et al (2010) As pleasure unfolds. Hedonic responses to tempting food. Psychol Sci 21:1863–1870

    Article  PubMed  Google Scholar 

  7. Carr KD (2011) Food scarcity, neuroadaptations, and the pathogenic potential of dieting in an unnatural ecology: compulsive eating and drug abuse. Physiol Behav 104:162–167

    Article  PubMed  CAS  Google Scholar 

  8. Hagan MM, Moss DE (1997) Persistence of binge-eating patterns after a history of restriction with intermittent bouts of refeeding on palatable food in rats: implications for bulimia nervosa. Int J Eat Dis 22:411–420

    Article  CAS  Google Scholar 

  9. Hagan MM et al (2002) A new animal model of binge eating: key synergistic role of past caloric restriction and stress. Physiol Behav 77:45–54

    Article  PubMed  CAS  Google Scholar 

  10. Hagan MM et al (2003) The role of palatable food and hunger as trigger factors in an animal model of stress induced binge eating. Int J Eat Dis 34:198–199

    Article  Google Scholar 

  11. Avena NM, Rada P, Hoebel BG (2008) Evidence for sugar addiction: behavioral and neurochemical effects of intermittent, excessive sugar intake. Neurosci Biobehav Rev 32:20–39

    Article  PubMed  CAS  Google Scholar 

  12. Consoli D et al (2009) Binge-like eating in mice. Int J Eat Disord 42:402–408

    Article  PubMed  Google Scholar 

  13. Latagliata EC et al (2010) Food seeking in spite of harmful consequences is under prefrontal cortical noradrenergic control. BMC Neurosci 11:15

    Article  PubMed  Google Scholar 

  14. Cabeza de Vaca S, Carr KD (1998) Food restriction enhances the central rewarding effect of abused drugs. J Neurosci 18:7502–7510

    PubMed  CAS  Google Scholar 

  15. Carroll ME, France CP, Meisch RA (1979) Food deprivation increases oral and intravenous drug intake in rats. Science 205:319–321

    Article  PubMed  CAS  Google Scholar 

  16. Carroll ME, Meisch RA (1984) Increased drug-reinforced behavior due to food deprivation. Adv Behav Pharmacol 4:47–88

    CAS  Google Scholar 

  17. Zheng D, Cabeza de Vaca S, Carr KD (2011) Food restriction increases acquisition, persistence and drug prime-induced expression of a cocaine-conditioned place preference in rats. Pharmacol Biochem Behav 100:538–544

    Article  PubMed  CAS  Google Scholar 

  18. Shalev U, Yap J, Shaham Y (2001) Leptin attenuates acute food deprivation-induced relapse to heroin seeking. J Neurosci 21:RC129

    Google Scholar 

  19. Kelley AE, Berridge KC (2002) The neuroscience of natural rewards: relevance to addictive drugs. J Neurosci 22:3306–3311

    PubMed  CAS  Google Scholar 

  20. Cardinal RN, Everitt BJ (2004) Neural and psychological mechanisms underlying appetitive learning: links to drug addiction. Curr Opin Neurobiol 14:156–162

    Article  PubMed  CAS  Google Scholar 

  21. Di Chiara G (2005) Dopamine in disturbances of food and drug motivated behavior: a case of homology? Physiol Behav 86:9–10

    Article  PubMed  CAS  Google Scholar 

  22. Volkow ND et al (2008) Overlapping neuronal circuits in addiction and obesity: evidence of systems pathology. Philos Trans R Soc Lond B Biol Sci 363:3191–3200

    Article  PubMed  Google Scholar 

  23. Wang GJ et al (2004) Similarity between obesity and drug addiction as assessed by neurofunctional imaging: a concept review. J Addict Dis 23:39–53

    Article  PubMed  Google Scholar 

  24. Davis C, Carter JC (2009) Compulsive overeating as an addiction disorder. A review of theory and evidence. Appetite 53:1–8

    Article  PubMed  Google Scholar 

  25. Frascella J et al (2010) Shared brain vulnerabilities open the way for nonsubstance addictions: carving addiction at a new joint? Ann NY Acad Sci 1187:294–315

    Article  PubMed  Google Scholar 

  26. Herzog DB et al (1992) Psychiatric comorbidity in treatment-seeking anorexics and bulimics. J Am Acad Child Adolesc Psychiatry 31:810–818

    Article  PubMed  CAS  Google Scholar 

  27. Wilson GT (1993) Binge eating and addictive disorders. In: Fairburn CG, Wilson GT (eds) Binge eating: nature, assessment, and treatment. Guilford Press, New York, pp 97–120

    Google Scholar 

  28. Krahn D et al (1992) The relationship of dieting severity and bulimic behaviors to alcohol and other drug use in young women. J Subst Abuse 4:341–353

    Article  PubMed  CAS  Google Scholar 

  29. Krahn DD et al (2005) Pathological dieting and alcohol use in college women–a continuum of behaviors. Eat Behav 6:43–52

    Article  PubMed  Google Scholar 

  30. Root TL et al (2010) Substance use disorders in women with anorexia nervosa. Int J Eat Disord 43:14–21

    PubMed  Google Scholar 

  31. Pisetsky EM et al (2008) Disordered eating and substance use in high-school students: results from the Youth Risk Behavior Surveillance System. Int J Eat Disord 41:464–470

    Article  PubMed  Google Scholar 

  32. Seo D-C, Jiang N (2009) Associations between smoking and severe dieting among adolescents. J Youth Adolesc 38:1364–1373

    Article  PubMed  Google Scholar 

  33. Wiederman MW, Pryor T (1996) Substance abuse and impulsive behaviors among adolescents with eating disorders. Addict Behav 21:269–272

    Article  PubMed  CAS  Google Scholar 

  34. Bassareo V, Di Chiara G (1999) Differential responsiveness of dopamine transmission to food-stimuli in nucleus accumbens shell/core compartments. Neurosci 89:637–641

    Article  CAS  Google Scholar 

  35. Bassareo V, Di Chiara G (1999) Modulation of feeding-induced activation of mesolimbic dopamine transmission by appetitive stimuli and its relation to motivational state. Eur J Neurosci 11:4389–4397

    Article  PubMed  CAS  Google Scholar 

  36. Palmiter RD (2007) Is dopamine a physiologically relevant mediator of feeding behavior? Trends Neurosci 30:375–381

    Article  PubMed  CAS  Google Scholar 

  37. Kenny PJ (2011) Reward mechanisms in obesity: new insights and future directions. Neuron 69:664–679

    Article  PubMed  CAS  Google Scholar 

  38. Wise RA, Bozarth MA (1985) Brain mechanisms of drug reward and euphoria. Psychiatr Med 3:445–460

    PubMed  CAS  Google Scholar 

  39. Pontieri FE, Tanda G, Di Chiara G (1995) Intravenous cocaine, morphine, and amphetamine preferentially increase extracellular dopamine in the “shell” as compared with the “core” of the rat nucleus accumbens. Proc Natl Acad Sci USA 92:12304–12308

    Article  PubMed  CAS  Google Scholar 

  40. Feltenstein MW, See RE (2008) The neurocircuitry of addiction: an overview. Br J Pharmacol 154:261–274

    Article  PubMed  CAS  Google Scholar 

  41. Smith GP (2004) Accumbens dopamine mediates the rewarding effect of orosensory stimulation by sucrose. Appetite 43:11–13

    Article  PubMed  CAS  Google Scholar 

  42. Hajnal A, Smith GP, Norgren R (2004) Oral sucrose stimulation increases accumbens dopamine in the rat. Am J Physiol Regul Integr Comp Physiol 286:R31–37

    Article  PubMed  CAS  Google Scholar 

  43. Norgren R, Hajnal A, Mungarndee SS (2006) Gustatory reward and the nucleus accumbens. Physiol Behav 89:531–535

    Article  PubMed  CAS  Google Scholar 

  44. Sclafani A, Touzani K, Bodnar RJ (2011) Dopamine and learned food preferences. Physiol Behav 104:64–68

    Article  PubMed  CAS  Google Scholar 

  45. Berridge KC (2007) The debate over dopamine’s role in reward: the case for incentive salience. Psychopharmacology 191:391–431

    Article  PubMed  CAS  Google Scholar 

  46. Stuber GD et al (2008) Reward-predictive cues enhance excitatory synaptic strength onto midbrain dopamine neurons. Science 321:1690–1692

    Article  PubMed  CAS  Google Scholar 

  47. Ranaldi R et al (2011) The effects of VTA NMDA receptor antagonism on reward-related learning and associated c-fos expression in forebrain. Behav Brain Res 216:424–432

    Article  PubMed  CAS  Google Scholar 

  48. Kelley AE (2004) Ventral striatal control of appetitive motivation: role in ingestive behavior and reward-related learning. Neurosci Biobehav Rev 27:765–776

    Article  PubMed  Google Scholar 

  49. Zellner MR, Kest K, Ranaldi R (2009) NMDA receptor antagonism in the ventral tegmental area impairs acquisition of reward-related learning. Behav Brain Res 197:442–449

    Article  PubMed  CAS  Google Scholar 

  50. Olds J, Milner P (1954) Positive reinforcement produced by electrical stimulation of septal area and other regions of rat brain. J Comp Physiol Psychol 47:419–427

    Article  PubMed  CAS  Google Scholar 

  51. Gallistel CR, Shizgal P, Yeomans JS (1981) A portrait of the substrate for self-stimulation. Psychol Rev 88:228–273

    Article  PubMed  CAS  Google Scholar 

  52. Liebman JM (1983) Discriminating between reward and performance: a critical review of intracranial self-stimulation methodology. Neurosci Biobehav Rev 9:45–72

    Article  Google Scholar 

  53. Wise RA (1996) Addictive drugs and brain stimulation reward. Annu Rev Neurosci 19:319–340

    Article  PubMed  CAS  Google Scholar 

  54. Carlezon WA Jr, Chartoff EH (2007) Intracranial self-stimulation (ICSS) in rodents to study the neurobiology of motivation. Nat Protocols 2:2987–2995

    Article  CAS  Google Scholar 

  55. Vlachou S, Markou A (2011) Intracranial self-stimulation. Animal models of drug addiction, Olmstead MC (ed). Neuromethods 53:3–56

    Article  CAS  Google Scholar 

  56. Cheer JF et al (2007) Coordinated accumbal dopamine release and neural activity drive goal-directed behavior. Neuron 54:237–244

    Article  PubMed  CAS  Google Scholar 

  57. Hernandez G et al (2007) Predictable and unpredictable rewards produce similar changes in dopamine tone. Behav Neurosci 121:887–895

    Article  PubMed  CAS  Google Scholar 

  58. Hunt GE, McGregor IS (2002) Contrasting effects of dopamine antagonists and frequency reduction on Fos expression induced by lateral hypothalamic stimulation. Behav Brain Res 132:187–201

    Article  PubMed  CAS  Google Scholar 

  59. Stellar JR, Kelley AE, Corbett D (1983) Effects of peripheral and central dopamine blockade on lateral hypothalamic self-stimulation: evidence for both reward and motor deficits. Pharmacol Biochem Behav 18:433–442

    Article  PubMed  CAS  Google Scholar 

  60. Nakajima S (1989) Subtypes of dopamine receptors involved in the mechanism of reinforcement. Neurosci Biobehav Rev 13:123–128

    Article  PubMed  CAS  Google Scholar 

  61. Bielajew C, Shizgal P (1986) Evidence implicating descending fibers in self-stimulation of the medial forebrain bundle. J Neurosci 6:919–926

    PubMed  CAS  Google Scholar 

  62. Murray B, Shizgal P (1996) Behavioral measures of conduction velocity and refractory period for reward-relevant axons in the anterior LH and VTA. Physiol Behav 59:643–652

    Article  PubMed  CAS  Google Scholar 

  63. Yeomans J, Baptista M (1997) Both nicotinic and muscarinic receptors in ventral tegmental area contribute to brain-stimulation reward. Pharmacol Biochem Behav 57:915–921

    Article  PubMed  CAS  Google Scholar 

  64. Rada PV et al (2000) Acetylcholine release in ventral tegmental area by hypothalamic self-stimulation, eating, and drinking. Pharmacol Biochem Behav 65:375–379

    Article  PubMed  CAS  Google Scholar 

  65. Blum K et al (2000) Reward deficiency syndrome: a biogenetic model for the diagnosis and treatment of impulsive, addictive, and compulsive behaviors. J Psychoactive Drugs 32(Suppl i–iv): 1–112

    Google Scholar 

  66. Johnson PM, Kenny PJ (2010) Dopamine D2 receptors in addiction-like reward dysfunction and compulsive eating in obese rats. Nat Neurosci 13:635–641

    Article  PubMed  CAS  Google Scholar 

  67. Wyvell CL, Berridge KC (2000) Intra-accumbens amphetamine increases the conditioned incentive salience of sucrose reward: enhancement of reward “wanting” without enhanced “liking” or response reinforcement. J Neurosci 20:8122–8130

    PubMed  CAS  Google Scholar 

  68. Pecina S et al (2003) Hyperdopaminergic mutant mice have higher “wanting” but not “liking” for sweet rewards. J Neurosci 23:9395–9402

    PubMed  CAS  Google Scholar 

  69. Pennartz CM, Groenewegen HJ, Lopes da Silva FH (1994) The nucleus accumbens as a complex of functionally distinct neuronal ensembles: an integration of behavioural, electrophysiological and anatomical data. Prog Neurobiol 42:719–761

    Article  PubMed  CAS  Google Scholar 

  70. Carelli RM, Ijames SG (2001) Selective activation of accumbens neurons by cocaine-associated stimuli during a water/cocaine multiple schedule. Brain Res 907:156–161

    Article  PubMed  CAS  Google Scholar 

  71. Peoples LL, Cavanaugh D (2003) Differential changes in signal and background firing of accumbal neurons during cocaine self-administration. J Neurophysiol 90:993–1010

    Article  PubMed  CAS  Google Scholar 

  72. Deadwyler SA et al (2004) Reward, memory and substance abuse: functional neuronal circuits in the nucleus accumbens. Neurosci Biobehav Rev 27:703–711

    Article  PubMed  Google Scholar 

  73. Moussawi K et al (2009) Acetylcysteine reverses cocaine-induced metaplasticity. Nat Neurosci 12:182–189

    Article  PubMed  CAS  Google Scholar 

  74. Moussawi K et al (2011) Reversing cocaine-induced synaptic potentiation provides enduring protection from relapse. Proc Natl Acad Sci USA 108:385–390

    Article  PubMed  CAS  Google Scholar 

  75. Kasanetz F et al (2010) Transition to addiction is associated with a persistent impairment in synaptic plasticity. Science 328:1709–1712

    Article  PubMed  CAS  Google Scholar 

  76. Wolf ME, Ferrario CR (2010) AMPA receptor plasticity in the nucleus accumbens after repeated exposure to cocaine. Neurosci Biobehav Rev 35:185–211

    Article  PubMed  CAS  Google Scholar 

  77. Kalivas PW (2009) The glutamate homeostasis hypothesis of addiction. Nat Rev Neurosci 10:561–572

    Article  PubMed  CAS  Google Scholar 

  78. Kalivas PW, Volkow N, Seamans J (2005) Unmanageable motivation in addiction: a pathology in prefrontal-accumbens glutamate transmission. Neuron 45:647–650

    Article  PubMed  CAS  Google Scholar 

  79. Conrad KL et al (2008) Formation of accumbens GluR2-lacking AMPA receptors mediates incubation of cocaine craving. Nature 454:118–121

    Article  PubMed  CAS  Google Scholar 

  80. Famous KR et al (2008) Phosphorylation-dependent trafficking of GluR2-containing AMPA receptors in the nucleus accumbens plays a critical role in the reinstatement of cocaine seeking. J Neurosci 28:11061–11070

    Article  PubMed  CAS  Google Scholar 

  81. Peng XX, Ziff EB, Carr KD (2011) Effects of food restriction and sucrose intake on synaptic delivery of AMPA receptors in nucleus accumbens. Synapse 65:1024–1031

    Article  PubMed  CAS  Google Scholar 

  82. Maldonado-Irizarry CS, Swanson CJ, Kelley AE (1995) Glutamate receptors in the nucleus accumbens shell control feeding behavior via the lateral hypothalamus. J Neurosci 15:6779–6788

    PubMed  CAS  Google Scholar 

  83. Zhang M, Balmadrid C, Kelley AE (2003) Nucleus accumbens opioid, GABaergic, and dopaminergic modulation of palatable food motivation: contrasting effects revealed by a progressive ratio study in the rat. Behav Neurosci 117:202–211

    Article  PubMed  CAS  Google Scholar 

  84. Wirtshafter D, Stratford TR (2010) Evidence for motivational effects elicited by activation of GABA-A or dopamine receptors in the nucleus accumbens shell. Pharmacol Biochem Behav 96:342–346

    Article  PubMed  CAS  Google Scholar 

  85. Smith KS, Berridge KC (2007) Opioid limbic circuit for reward: interaction between hedonic hotspots of nucleus accumbens and ventral pallidum. J Neurosci 27:1594–1605

    Article  PubMed  CAS  Google Scholar 

  86. Mark GP et al (2011) Cholinergic modulation of mesolimbic dopamine function and reward. Physiol Behav 104:76–81

    Article  PubMed  CAS  Google Scholar 

  87. Stephens DN, Herberg LJ (1979) Dopamine-acetylcholine “balance” in nucleus accumbens and corpus striatum and its effect on hypothalamic self-stimulation. Eur J Pharmacol 54:331–339

    Article  PubMed  CAS  Google Scholar 

  88. Johnson PI et al (1995) Reward shifts and motor responses following microinjections of opiate-specific agonists into either the core or shell of the nucleus accumbens. Psychopharmacology 120:195–202

    Article  PubMed  CAS  Google Scholar 

  89. Carr KD et al (2009) Reward-potentiating effects of D-1 dopamine receptor agonist and AMPA GluR1 antagonist in nucleus accumbens shell are increased by food restriction; possible relevance to enhancement of adaptive and maladaptive reward-directed behavior. Psychopharmacology 202:731–743

    Article  PubMed  CAS  Google Scholar 

  90. Edmonds DE, Gallistel CR (1974) Parametric analysis of brain stimulation reward in the rat III. Effect of performance variables on the reward summation function. J Comp Physiol Psychol 87:876–884

    Article  PubMed  CAS  Google Scholar 

  91. Miliaressis E et al (1986) The curve-shift paradigm in self-stimulation. Physiol Behav 37:85–91

    Article  PubMed  CAS  Google Scholar 

  92. Miliaressis E, Rompre PP, Durivage A (1982) Psychophysical method for mapping behavioral substrates using a moveable electrode. Brain Res Bull 8:693–701

    Article  PubMed  CAS  Google Scholar 

  93. Campbell KA, Evans G, Gallistel CR (1985) A microcomputer-based method for physiologically interpretable measurement of the rewarding efficacy of brain stimulation. Physiol Behav 35:395–403

    Article  PubMed  CAS  Google Scholar 

  94. Coons EE, White HA (1977) Tonic properties of orosensation and the modulation of intracranial self-stimulation: the CNS weighting of external and internal factors governing reward. Ann NY Acad Sci 290:158–179

    Article  PubMed  CAS  Google Scholar 

  95. Conover KL, Shizgal P (1994) Competition and summation between rewarding effects of sucrose and lateral hypothalamic stimulation in the rat. Behav Neurosci 108:537–548

    Article  PubMed  CAS  Google Scholar 

  96. Carr KD, Kutchukhidze N (2000) Chronic food restriction increases fos-like immunoreactivity induced in rat forebrain by intraventricular amphetamine. Brain Res 861:88–96

    Article  PubMed  CAS  Google Scholar 

  97. Carr KD et al (2003) Evidence of increased dopamine receptor signaling in food-restricted rats. Neuroscience 119:1157–1167

    Article  PubMed  CAS  Google Scholar 

  98. Haberny S et al (2004) Chronic food restriction increases D-1 dopamine receptor agonist-induced ERK1/2 MAP Kinase and CREB phosphorylation in caudate-putamen and nucleus accumbens. Neuroscience 125:289–298

    Article  PubMed  CAS  Google Scholar 

  99. Haberny SL, Carr KD (2005) Food restriction increases NMDA receptor-mediated CaMK II and NMDA receptor/ERK 1/2-mediated CREB phosphorylation in nucleus accumbens upon D-1 dopamine receptor stimulation in rats. Neuroscience 132:1035–1043

    Article  PubMed  CAS  Google Scholar 

  100. Carr KD et al (2009) Effects of the MEK inhibitor, SL-327, on rewarding, motor- and cellular-activating effects of D-amphetamine and SKF-82958, and their augmentation by food restriction in rat. Psychopharmacology 201:495–506

    Article  PubMed  CAS  Google Scholar 

  101. Sweatt JD (2001) The neuronal MAP kinase cascade: a biochemical signal integration system subserving synaptic plasticity and memory. J Neurochem 76:1–10

    Article  PubMed  CAS  Google Scholar 

  102. Thomas GM, Huganir RL (2004) MAPK cascade signaling and synaptic plasticity. Nat Rev Neurosci 5:173–183

    Article  PubMed  CAS  Google Scholar 

  103. Carr KD et al (2010) AMPA receptor subunit GluR1 downstream of D-1 dopamine receptor stimulation in nucleus accumbens shell mediates increased drug reward magnitude in food-restricted rats. Neuroscience 165:1074–1086

    Article  PubMed  CAS  Google Scholar 

  104. Liu S et al (2011) Enhanced cocaine-conditioned place preference and associated brain regional levels of BDNF, p-ERK1/2 and p-Ser845-GluR1 in food-restricted rats. Brain Res 1400:31–41

    Article  PubMed  CAS  Google Scholar 

  105. Roche KW et al (1996) Characterization of multiple phosphorylation sites on the AMPA receptor GluR1 subunit. Neuron 16:1179–1188

    Article  PubMed  CAS  Google Scholar 

  106. Esteban JA et al (2003) PKA phosphorylation of AMPA receptor subunits controls synaptic trafficking underlying plasticity. Nat Neurosci 6:136–143

    Article  PubMed  CAS  Google Scholar 

  107. Boehm J et al (2006) Synaptic incorporation of AMPA receptors during LTP is controlled by a PKC phosphorylation site on GluR1. Neuron 51:213–225

    Article  PubMed  CAS  Google Scholar 

  108. Oh MC et al (2006) Extrasynaptic membrane trafficking regulated by GluR1 serine 845 phosphorylation primes AMPA receptors for long-term potentiation. J Biol Chem 281:752–758

    Article  PubMed  CAS  Google Scholar 

  109. Ehlers MD et al (2007) Diffusional trapping of GluR1 AMPA receptors by input-specific synaptic activity. Neuron 54:447–460

    Article  PubMed  CAS  Google Scholar 

  110. Greger IH, Ziff EB, Penn AC (2007) Molecular determinants of AMPA receptor subunit assembly. Trends Neurosci 30:407–416

    Article  PubMed  CAS  Google Scholar 

  111. He K et al (2009) Stabilization of Ca2+-permeable AMPA receptors at perisynaptic sites by GluR1-S845 phosphorylation. Proc Natl Acad Sci USA 106:20033–20038

    PubMed  CAS  Google Scholar 

  112. Kessels HW, Malinow R (2009) Synaptic AMPA receptor plasticity and behavior. Neuron 61:340–350

    Article  PubMed  CAS  Google Scholar 

  113. Choquet D (2010) Fast AMPAR trafficking for a high-frequency synaptic transmission. Eur J Neurosci 32:250–260

    Article  PubMed  Google Scholar 

  114. Figlewicz DP et al (2003) Expression of receptors for insulin and leptin in the ventral tegmental area/substantia nigra (VTA/SN) of the rat. Brain Res 21:107–115

    Article  Google Scholar 

  115. Hommel JD et al (2006) Leptin receptor signaling in midbrain dopamine neurons regulates feeding. Neuron 51:801–810

    Article  PubMed  CAS  Google Scholar 

  116. Fulton S et al (2006) Leptin regulation of the mesoaccumbens dopamine pathway. Neuron 51:811–822

    Article  PubMed  CAS  Google Scholar 

  117. Hao J et al (2006) Effects of central leptin infusion on the reward-potentiating effects of d-amphetamine. Brain Res 1087:123–133

    Article  PubMed  CAS  Google Scholar 

  118. Cabeza de Vaca S, Krahne L, Carr KD (2004) A progressive ratio schedule of self-stimulation testing reveals profound augmentation of d-amphetamine reward by food restriction but no effect of a “sensitizing” regimen of d-amphetamine. Psychopharmacology 175:106–113

    Article  PubMed  CAS  Google Scholar 

  119. Cabeza de Vaca S et al (2005) Feeding, body weight and sensitivity to non-ingestive reward stimuli during and after 12-day continuous central infusions of melanocortin receptor ligands. Peptides 26:2314–2321

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by DA03956 from NIDA/NIH and a NARSAD Award to KDC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenneth D. Carr Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Carr, K.D., de Vaca, S.C. (2013). Food Restriction and Reward in Rats. In: Avena, N. (eds) Animal Models of Eating Disorders. Neuromethods, vol 74. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-104-2_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-104-2_16

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-103-5

  • Online ISBN: 978-1-62703-104-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics