Skip to main content

Food Seeking in Spite of Harmful Consequences

  • Protocol
  • First Online:
Animal Models of Eating Disorders

Abstract

In industrialized nations, overeating is a significant problem leading to overweight, obesity, and a host of related disorders; the increase in these disorders has prompted a significant amount of research aimed at understanding their etiology. Eating disorders are multifactorial conditions involving genetic, metabolic, environmental, and behavioral factors. Considering that compulsive eating in the face of adverse consequences characterizes some eating disorders, similar to the way in which compulsive drug intake characterizes drug addiction, it might be considered an addiction in its own right. Moreover, numerous review articles have recently drawn a connection between the neural circuits activated in the seeking/intake of palatable food and drugs of abuse. Based on this observation, “food addiction” has emerged as an area of intense scientific research, and accumulating evidence suggests that it is possible to model some aspects of food addiction in animals. The development of well-characterized animal models would advance our understanding of the etiologic neural factors involved in eating disorders, such as compulsive overeating, and it would permit to propose targeted pharmacological therapies. However, to date, little evidence has been reported of continued food seeking and intake despite its harmful consequences in rats and mice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Volkow ND, Wise RA (2005) How can drug addiction help us understand obesity? Nat Neurosci 8:555–560

    Article  PubMed  CAS  Google Scholar 

  2. Hagan MM et al (2003) The role of palatable food and hunger as trigger factors in an animal model of stress induced binge eating. Int J Eat Disord 34:183–197

    Article  PubMed  Google Scholar 

  3. Corwin RL, Buda-Levin A (2007) Behavioral models of binge-type eating. Physiol Behav 82:123–130

    Article  Google Scholar 

  4. Dallman MF et al (2003) Chronic stress and obesity: a new view of “comfort food”. Proc Natl Acad Sci USA 100(20):11696–11701

    Article  PubMed  CAS  Google Scholar 

  5. Heyne A et al (2009) An animal model of compulsive food-taking behaviour. Addict Biol 14(4):373–383

    Article  PubMed  Google Scholar 

  6. Volkow ND et al (2008) Overlapping neuronal circuits in addiction and obesity: evidence of systems pathology. Philos Trans R Soc Lond B Biol Sci 363:3191–3200

    Article  PubMed  Google Scholar 

  7. Corwin RL, Avena NM, Boggiano MM (2011) Feeding and reward: Perspectives from three rat models of binge eating. Physiol Behav 104:87–97

    Article  PubMed  CAS  Google Scholar 

  8. Parylak SL, Koob GF, Zorrilla EP (2011) The dark side of food addiction. Physiol Behav 104:149–156

    Article  PubMed  CAS  Google Scholar 

  9. Deroche-Gamonet V, Belin D, Piazza PV (2004) Evidence for addiction-like behavior in the rat. Science 305:1014–1017

    Article  PubMed  CAS  Google Scholar 

  10. Vanderschuren LJ, Everitt BJ (2004) Drug seeking becomes compulsive after prolonged cocaine self-administration. Science 305:1017–1019

    Article  PubMed  CAS  Google Scholar 

  11. Hoebel BG et al (2009) Natural addiction: a behavioral and circuit model based on sugar addiction in rats. J Addict Med 3:33–41

    Article  PubMed  Google Scholar 

  12. Gearhardt AN et al (2011) Neural correlates of food addiction. Arch Gen Psychiatry 68:808–816

    Article  PubMed  Google Scholar 

  13. Ifland JR et al (2009) Refined food addiction: a classic substance use disorders. Med Hypotheses 72:518–526

    Article  PubMed  CAS  Google Scholar 

  14. Hagan MM et al (2002) A new animal model of binge-eating: key synergistic role of past caloric restriction and stress. Physiol Behav 77:45–54

    Article  PubMed  CAS  Google Scholar 

  15. Boggiano MM, Chandler PC (2006) Binge eating in rats produced by combining dieting with stress. Curr Protoc Neurosci Chap. 9, Unit 9.23A

    Google Scholar 

  16. Teegarden SL, Bale TL (2007) Decreases in dietary preference produce increased emotionality and risk for dietary relapse. Biol Psychiatry 61:1021–1029

    Article  PubMed  Google Scholar 

  17. Avena NM, Rada P, Hoebel B (2008) Evidence for sugar addiction: behavioral and neurochemical effects of intermittent, excessive sugar intake. Neurosci Biobehav Rev 32:20–39

    Article  PubMed  CAS  Google Scholar 

  18. Le Merrer J, Stephens DN (2006) Food-induced behavioral sensitization, its cross-sensitization to cocaine and morphine, pharmacological blockade, and effect on food intake. J Neurosci 26:7163–7171

    Article  PubMed  Google Scholar 

  19. Lenoir M et al (2007) Intense sweetness surpasses cocaine reward. Plos ONE 2:e698

    Article  PubMed  Google Scholar 

  20. Coccurello R, D’Amato FR, Moles A (2008) Chronic social stress, hedonism and vulnerability to obesity: lessons from rodents. Neurosci Biobehav Rev 33:537–550

    Article  PubMed  Google Scholar 

  21. Petrovich GD et al (2007) Medial prefrontal cortex is necessary for an appetitive contextual conditioned stimulus to promote eating in sated rats. J Neurosci 27:6436–6441

    Article  PubMed  CAS  Google Scholar 

  22. Johnson PM, Kenny PJ (2010) Addiction-like reward dysfunction and compulsive eating in obese rats: role for dopamine D2 receptors. Nat Neurosci 13:635–641

    Article  PubMed  CAS  Google Scholar 

  23. Cottone P et al (2008) Opioid-dependent anticipatory negative contrast and binge-like eating in rats with limited access to highly ­preferred food. Neuropsychopharmacology 33:524–535

    Article  PubMed  CAS  Google Scholar 

  24. Cottone P et al (2009) CRF system recruitment mediates dark side of compulsive eating. Proc Natl Acad Sci USA 106:20016–20020

    PubMed  CAS  Google Scholar 

  25. Cifani C et al (2009) A preclinical model of binge eating elicited by yo-yo dieting and stressful exposure to food: effect of sibutramine, fluoxetine, topiramate, and midazolam. Psychopharmacology 204:113–125

    Article  PubMed  CAS  Google Scholar 

  26. Avena NM, Hoebel B (2003) A diet promoting sugar dependency causes behavioral cross-sensitization to a low dose of amphetamine. Neuroscience 122:17–20

    Article  PubMed  CAS  Google Scholar 

  27. Fallon S et al (2007) Food reward-induced neurotransmitter changes in cognitive brain regions. Neurochem Res 32:1772–1782

    Article  PubMed  CAS  Google Scholar 

  28. Kelley AE, Berridge KC (2002) The neuroscience of natural rewards: relevance to addictive drugs. J Neurosci 22:3306–3311

    PubMed  CAS  Google Scholar 

  29. Pelchat ML (2002) Of human bondage: food cravings, obsession, compulsion, and addiction. Physiol Behav 76:347–352

    Article  PubMed  CAS  Google Scholar 

  30. Ventura R, Morrone C, Puglisi-Allegra S (2007) Prefrontal/accumbal catecholamine system determines motivational salience attribution to both reward- and aversion-related stimuli. Proc Natl Acad Sci USA 104:5181–5186

    Article  PubMed  CAS  Google Scholar 

  31. Ventura R et al (2008) Prefrontal norepinephrine determines attribution of “high” motivational salience. PLoS One 3:e3044

    Article  PubMed  Google Scholar 

  32. Wang GJ et al (2004) Similarity between obesity and drug addiction as assessed by neurofunctional imaging: a concept review. J Addict Dis 23:39–53

    Article  PubMed  Google Scholar 

  33. Berner LA et al (2011) Baclofen suppresses binge eating of pure fat but not a sugar-rich or sweet-fat diet. Behav Pharmacol 20:631–634

    Article  Google Scholar 

  34. Thornley S et al (2008) The obesity epidemic: is glycemic index the key to unlocking a ­hidden addiction? Med Hypotheses 71:709–714

    Article  PubMed  CAS  Google Scholar 

  35. Trinko R et al (2007) Neural mechanisms underlying obesity and drug addiction. Physiol Behav 91:499–505

    Article  PubMed  CAS  Google Scholar 

  36. Schroeder BE, Binzak JM, Kelley AE (2001) A common profile of prefrontal cortical activation following exposure to nicotine- or chocolate-associated contextual cues. Neuroscience 105:535–545

    Article  PubMed  CAS  Google Scholar 

  37. Volkow ND, Fowler JS, Wang GJ (2003) The addicted human brain: insights from imaging studies. J Clin Invest 111:1444–1451

    PubMed  CAS  Google Scholar 

  38. Volkow ND, Wang GJ, Baler RD (2011) Reward, dopamine and the control of food intake: implications for obesity. Trends Cogn Sci 15:37–46

    Article  PubMed  CAS  Google Scholar 

  39. Volkow ND et al (2008) Low dopamine striatal D2 receptors are associated with prefrontal metabolism in obese subjects: possible contributing factors. Neuroimage 42:1537–1543

    Article  PubMed  Google Scholar 

  40. Everitt BJ, Robbins TW (2005) Neural systems of reinforcement for drug addiction: from actions to habits to compulsion. Nat Neurosci 8:1481–1489

    Article  PubMed  CAS  Google Scholar 

  41. Everitt BJ et al (2008) Review. Neural mechanisms underlying the vulnerability to develop compulsive drug-seeking habits and addiction. Philos Trans R Soc Lond B Biol Sci 363:3125–3135

    Article  PubMed  Google Scholar 

  42. Rolls ET (2004) Smell, taste, texture, and temperature multimodal representations in the brain, and their relevance to the control of appetite. Nutr Rev 62:S193–204

    Article  PubMed  Google Scholar 

  43. Killgore WD et al (2003) Cortical and limbic activation during viewing of high- versus low-calorie foods. Neuroimage 19:1381–1394

    Article  PubMed  Google Scholar 

  44. Uher R et al (2004) Medial prefrontal cortex activity associated with symptom provocation in eating disorders. Am J Psychiatry 161:1238–1246

    Article  PubMed  Google Scholar 

  45. Gautier JF et al (2000) Differential brain responses to satiation in obese and lean men. Diabetes 49:838–846

    Article  PubMed  CAS  Google Scholar 

  46. Phan KL et al (2002) Functional neuroanatomy of emotion: a meta-analysis of emotion activation studies in PET and fMRI. Neuroimage 16:331–348

    Article  PubMed  Google Scholar 

  47. Goldstein RZ, Volkow ND (2002) Drug addiction and its underlying neurobiological basis: neuroimaging evidence for the involvement of the frontal cortex. Am J Psychiatry 159:1642–1652

    Article  PubMed  Google Scholar 

  48. Darracq L et al (1998) Importance of the noradrenaline-dopamine coupling in the locomotor activating effects of D-amphetamine. J Neurosci 18:2729–2739

    PubMed  CAS  Google Scholar 

  49. Feenstra MG et al (2000) Dopamine and noradrenaline efflux in the prefrontal cortex in the light and dark period: effects of novelty and handling and comparison to the nucleus accumbens. Neuroscience 100:741–748

    Article  PubMed  CAS  Google Scholar 

  50. Ventura R et al (2003) Norepinephrine in the prefrontal cortex is critical for amphetamine-induced reward and mesoaccumbens dopamine release. J Neurosci 2003(23):1879–1885

    Google Scholar 

  51. Ventura R, Alcaro A, Puglisi-Allegra S (2005) Prefrontal cortical norepinephrine release is critical for morphine-induced reward, reinstatement and dopamine release in the nucleus accumbens. Cer Cortex 15:1877–1886

    Article  Google Scholar 

  52. Mingote S, de Bruin JP, Feenstra MG (2004) Noradrenaline and dopamine efflux in the ­prefrontal cortex in relation to appetitive ­classical conditioning. J Neurosci 24:2475–2480

    Article  PubMed  CAS  Google Scholar 

  53. Latagliata EC et al (2010) Food seeking in spite of harmful consequences is under prefrontal cortical noradrenergic control. BMC Neurosci 8:11–15

    Google Scholar 

  54. Kaye W (2008) Neurobiology of anorexia and bulimia nervosa. Physiol Behav 94:121–135

    Article  PubMed  CAS  Google Scholar 

  55. Adam TC, Epel ES (2007) Stress, eating and the reward system. Physiol Behav 91:449–458

    Article  PubMed  CAS  Google Scholar 

  56. Casper RC, Sullivan EL, Tecott L (2008) Relevance of animal models to human eating disorders and obesity. Psychopharmacology 199:313–329

    Article  PubMed  CAS  Google Scholar 

  57. Ghitza UE et al (2007) Peptide YY3-36 decreases reinstatement of high-fat food seeking during dieting in a rat relapse model. J Neurosci 27:11522–11532

    Article  PubMed  CAS  Google Scholar 

  58. Parker G, Parker I, Brotchie H (2006) Mood state effects of chocolate. J Affect Dis 92:149–159

    Article  PubMed  Google Scholar 

  59. Ghitza UE et al (2006) The anxiogenic drug yohimbine reinstates palatable food seeking in a rat relapse model: a role of CRF1 receptors. Neuropsychopharmacology 31:2188–2196

    PubMed  CAS  Google Scholar 

  60. Shaham Y, Erb S, Stewart J (2000) Stress-induced relapse to heroin and cocaine seeking in rats: a review. Brain Res Rev 33:13–33

    Article  PubMed  CAS  Google Scholar 

  61. Marinelli M, Piazza PV (2002) Interaction between glucocorticoid hormones, stress and psychostimulant drugs. Eur J Neurosci 16:387–394

    Article  PubMed  Google Scholar 

  62. Charney DS, Manji HK (2004) Life stress, genes, and depression: multiple pathways lead to increased risk and new opportunities for interventions. Sci STKE 225:re5

    Google Scholar 

  63. Hasler G et al (2004) Discovering endophenotypes for major depression. Neuropsycho­pharmacology 29:1765–1781

    Article  PubMed  CAS  Google Scholar 

  64. McFarland K et al (2004) Limbic and motor circuitry underlying footshock-induced reinstatement of cocaine-seeking behavior. J Neurosci 24:1551–1560

    Article  PubMed  CAS  Google Scholar 

  65. Brady KT, Sinha R (2005) Co-occuring mental and substance use disorders: the neurobiological effects of chronic stress. Am J Psychiatry 162:1483–1493

    Article  PubMed  Google Scholar 

  66. Maier SF, Watkins LR (2005) Stressor controllability and learned helplessness: the role of the dorsal raphe nucleus, serotonin and corticotropin-releasing factor. Neurosci Biobehav Rev 29:829–41

    Article  PubMed  CAS  Google Scholar 

  67. Dallman MF, Pecoraro NC, la Fleur SE (2005) Chronic stress and comfort foods: self-medication and abdominal obesity. Brain Behav Immun 19:275–280

    Article  PubMed  Google Scholar 

  68. Pecoraro N et al (2004) Chronic stress promotes palatable feeding, which reduces signs of stress: feedforward and feedback effects of chronic stress. Endocrinology 145:3754–3762

    Article  PubMed  CAS  Google Scholar 

  69. Fairburn CG (1997) Bulimia outcome. Am J Psychiatry 154:1791–1792

    PubMed  CAS  Google Scholar 

  70. Polivy J, Herman CP (1985) Dieting and binging. A causal analysis. Am Psychol 40:193–201

    Article  PubMed  CAS  Google Scholar 

  71. Burger KS, Stice E (2011) Relation of dietary restraint scores to activation of reward-related brain regions in response to food intake, anticipated intake, and food pictures. Neuroimage 55:233–239

    Article  PubMed  Google Scholar 

  72. Waters A, Hill A, Waller G (2001) Bulimics’ responses to food cravings: is binge-eating a product of hunger or emotional state? Behav Res Ther 39:877–886

    Article  PubMed  CAS  Google Scholar 

  73. Cabib S et al (2000) Abolition and reversal of strain differences in behavioral responses to drugs of abuse after a brief experience. Science 289:463–465

    Article  PubMed  CAS  Google Scholar 

  74. Armario A, Montero JL, Jolin T (1987) Chronic food restriction and the circadian rhythms of pituitary-adrenal hormones, growth hormone and thyroid-stimulating hormone. Ann Nutr Metab 31:81–87

    Article  PubMed  CAS  Google Scholar 

  75. Garçia-Belenguer S, Oliver C, Morméde P (1993) Facilitation and feedback in the ­hypothalamo-pituitary-adrenal axis during food restriction in rats. J Neuroendocrin 5:663–668

    Article  Google Scholar 

  76. Han ES, Evans TR, Nelson JF (1998) Adrenocortical responsiveness to adrenocorticotropic hormone is enhanced in chronically food-restricted rats. J Nutr 128:1415–1420

    PubMed  CAS  Google Scholar 

  77. Johansson A et al (2008) The relative impact of chronic food restriction and acute food deprivation on plasma hormone levels and hypothalamic neuropeptide expression. Peptides 29:1588–1595

    Article  PubMed  CAS  Google Scholar 

  78. Pankevich DE et al (2010) Caloric restriction experience reprograms stress and orexigenic pathways and promotes binge eating. J Neurosci 30:16399–16407

    Article  PubMed  CAS  Google Scholar 

  79. Carr KD (2002) Augmentation of drug reward by chronic food restriction: behavioral evidence and underlying mechanisms. Physiol Behav 76:353–364

    Article  PubMed  CAS  Google Scholar 

  80. Deroche V et al (1995) Stress-induced sensitization and glucocorticoids. I. Sensitization of dopamine-dependent locomotor effects of amphetamine and morphine depends on stress-induced corticosterone secretion. J Neurosci 15:7181–7188

    PubMed  CAS  Google Scholar 

  81. Oswald KD et al (2011) Motivation for palatable food despite consequences in an animal model of binge eating. Int J Eat Dis 44:203–211

    Article  Google Scholar 

  82. Franklin KBJ, Paxinos G (1998) The mouse brain. Stereotaxic coordinates. Academic, San Diego

    Google Scholar 

  83. Spink AJ et al (2001) The EthoVision video tracking system–a tool for behavioral phenotyping of transgenic mice. Physiol Behav 73:731–744

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Alessandro Ribaldo for figures regarding schematic representation of the apparatus and Jenna Hollenstein for helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rossella Ventura Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Ventura, R., Latagliata, E.C., Patrono, E., Di Segni, M., Puglisi-Allegra, S. (2013). Food Seeking in Spite of Harmful Consequences. In: Avena, N. (eds) Animal Models of Eating Disorders. Neuromethods, vol 74. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-104-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-104-2_14

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-103-5

  • Online ISBN: 978-1-62703-104-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics