Skip to main content

Atherosclerosis Models with Cell-Mediated Calcification

  • Protocol
  • First Online:
  • 980 Accesses

Part of the book series: Methods in Pharmacology and Toxicology ((MIPT))

Abstract

This protocol describes a novel chronic total occlusion (CTO) model that features cell-mediated calcium deposits in rabbit femoral arteries. CTO is the most severe case of atherosclerosis, and it remains a big challenge in cardiology. There are urgent needs to establish a CTO animal model in order to develop new devices and drugs. The purpose of this protocol is to provide such a platform for advancing the treatment of CTOs.

Our CTO model features the following four prominent characteristics of a clinical calcified atherosclerosis: (1) The occlusion site occurs gradually. (2) Calcium deposits are mediated by cells and they progress over time. (3) Acute and chronic inflammation at occlusion sites. (4) Recanalization (new vessel formation) at occlusion sites. These facts indicate that our model bears great similarities to clinical CTO disease. The strategy we apply here is to implant tissue-engineering scaffolds into rabbit femoral arteries and induce the cells on scaffolds to deposit calcium themselves.

In this chapter, we first describe a detailed protocol of scaffold fabrication, growth factor coating on scaffolds, and the initiation of cellular calcification. We then provide easy-to-follow steps to implant cellular constructs into animal arteries using interventional techniques. Finally, we describe the methods to detect calcium in CTOs and the staining approaches to identify other pathological characteristics at the occlusion sites. Additionally, we provide notes to highlight the critical steps in order to successfully carry out this protocol. An animal CTO model generated by the above techniques will provide a useful platform to develop new devices and test novel drugs for treatment of the most severe case of atherosclerotic calcification.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   159.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   209.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   209.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Shamoun F, Sural N, Abela G (2008) Peripheral artery disease: therapeutic advances. Expert Rev Cardiovasc Ther 6(4):539–553

    Article  CAS  PubMed  Google Scholar 

  2. Soon KH, Selvanayagam JB, Cox N, Kelly AM, Bell KW et al (2007) Percutaneous revascularization of chronic total occlusions: review of the role of invasive and non-invasive imaging modalities. Int J Cardiol 116(1):1–6

    Article  PubMed  Google Scholar 

  3. Cabrera R, Sha Z, Vadakkan TJ, Otero J, Kriegenburg F et al (2010) Proteasome nuclear import mediated by Arc3 can influence efficient DNA damage repair and mitosis in Schizosaccharomyces pombe. Mol Biol Cell 21(18):3125–3136

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Sha Z, Brill LM, Cabrera R, Kleifeld O, Scheliga JS et al (2009) The eIF3 interactome reveals the translasome, a supercomplex linking protein synthesis and degradation machineries. Mol Cell 36(1):141–152

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Sha Z, Yen HC, Scheel H, Suo J, Hofmann K et al (2007) Isolation of the Schizosaccharomyces pombe proteasome subunit Rpn7 and a structure-function study of the proteasome-COP9-initiation factor domain. J Biol Chem 282(44):32414–32423

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Giachelli CM (2004) Vascular calcification mechanisms. J Am Soc Nephrol 15(12):2959–2964

    Article  PubMed  Google Scholar 

  7. Montecucco F, Steffens S, Mach F (2007) The immune response is involved in atherosclerotic plaque calcification: could the RANKL/RANK/OPG system be a marker of plaque instability? Clin Dev Immunol 2007:75805

    Article  PubMed Central  PubMed  Google Scholar 

  8. Bhambhani A, Gadkar N, Cook S (2007) Intravascular ultrasound guided percutaneous coronary intervention for chronic toal occlusion of left anterior descending artery. Kardiovaskulare Medizin 10:78–80

    Google Scholar 

  9. Radke PW, Heinl-Green A, Frass OM, Post MJ, Sato K et al (2006) Evaluation of the porcine ameroid constrictor model of myocardial ischemia for therapeutic angiogenesis studies. Endothelium 13(1):25–33

    Article  PubMed  Google Scholar 

  10. Segev A, Nili N, Qiang B, Charron T, Butany J et al (2005) Human-grade purified collagenase for the treatment of experimental arterial chronic total occlusion. Cardiovasc Revasc Med 6(2):65–69

    Article  PubMed  Google Scholar 

  11. Suzuki Y, Oyane A, Ikeno F, Lyons JK, Yeung AC (2009) Development of animal model for calcified chronic total occlusion. Catheter Cardiovasc Interv 74(3):468–475

    Article  PubMed  Google Scholar 

  12. Suzuki K, Saito N, Zhang G, Conditt G, McGregor J et al (2008) Development of a novel calcified total occlusion model in porcine coronary arteries. J Invasive Cardiol 20(6):296–301

    PubMed  Google Scholar 

  13. Zhu B, Bailey SR, Elliott J, Li X, Escobar GP et al (2012) Development of a total atherosclerotic occlusion with cell-mediated calcium deposits in a rabbit femoral artery using tissue-engineering scaffolds. J Tissue Eng Regen Med 6(3):193–204. doi:10.1002/term.413

    Article  CAS  PubMed  Google Scholar 

  14. Jones JR, Tsigkou O, Coates EE, Stevens MM, Polak JM et al (2007) Extracellular matrix formation and mineralization on a phosphate-free porous bioactive glass scaffold using primary human osteoblast (HOB) cells. Biomaterials 28(9):1653–1663

    Article  CAS  PubMed  Google Scholar 

  15. Eichner A, Brock J, Heldin CH, Souchelnytskyi S (2002) Bone morphogenetic protein-7 (OP1) and transforming growth factor-beta1 modulate 1,25(OH)2-vitamin D3-induced differentiation of human osteoblasts. Exp Cell Res 275(1):132–142

    Article  CAS  PubMed  Google Scholar 

  16. Jorgensen NR, Henriksen Z, Sorensen OH, Civitelli R (2004) Dexamethasone, BMP-2, and 1,25-dihydroxyvitamin D enhance a more differentiated osteoblast phenotype: validation of an in vitro model for human bone marrow-derived primary osteoblasts. Steroids 69(4):219–226

    Article  CAS  PubMed  Google Scholar 

  17. Lecanda F, Avioli LV, Cheng SL (1997) Regulation of bone matrix protein expression and induction of differentiation of human osteoblasts and human bone marrow stromal cells by bone morphogenetic protein-2. J Cell Biochem 67(3):386–396

    Article  CAS  PubMed  Google Scholar 

  18. Gordeladze JO, Drevon CA, Syversen U, Reseland JE (2002) Leptin stimulates human osteoblastic cell proliferation, de novo collagen synthesis, and mineralization: impact on differentiation markers, apoptosis, and osteoclastic signaling. J Cell Biochem 85(4):825–836

    Article  CAS  PubMed  Google Scholar 

  19. Zhang H, Ahmad M, Gronowicz G (2003) Effects of transforming growth factor-beta 1 (TGF-beta1) on in vitro mineralization of human osteoblasts on implant materials. Biomaterials 24(12):2013–2020

    Article  CAS  PubMed  Google Scholar 

  20. Zhang H, Aronow MS, Gronowicz GA (2005) Transforming growth factor-beta 1 (TGF-beta1) prevents the age-dependent decrease in bone formation in human osteoblast/implant cultures. J Biomed Mater Res A 75(1):98–105

    Article  PubMed  Google Scholar 

  21. Zhu B, Bailey SR, Mauli Agrawal C (2011) Engineering calcium deposits on polycaprolactone scaffolds for intravascular applications using primary human osteoblasts. J Tissue Eng Regen Med 5(4):324–336

    Article  CAS  PubMed  Google Scholar 

  22. Ciapetti G, Ambrosio L, Savarino L, Granchi D, Cenni E et al (2003) Osteoblast growth and function in porous poly epsilon -caprolactone matrices for bone repair: a preliminary study. Biomaterials 24(21):3815–3824

    Article  CAS  PubMed  Google Scholar 

  23. Chim H, Ong JL, Schantz JT, Hutmacher DW, Agrawal CM (2003) Efficacy of glow discharge gas plasma treatment as a surface modification process for three-dimensional poly (D, L-lactide) scaffolds. J Biomed Mater Res A 65(3):327–335

    Article  PubMed  Google Scholar 

  24. Zhu B, Bailey SR, Mauli Agrawal C (2011) Calcification of primary human osteoblast cultures under flow conditions using polycaprolactone scaffolds for intravascular applications. J Tissue Eng Regen Med. doi: 10.1002/term.472

    Google Scholar 

  25. Lin J, Lindsey ML, Zhu B, Agrawal CM, Bailey SR (2007) Effects of surface-modified scaffolds on the growth and differentiation of mouse adipose-derived stromal cells. J Tissue Eng Regen Med 1(3):211–217

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beili Zhu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Zhu, B. (2012). Atherosclerosis Models with Cell-Mediated Calcification. In: Szallasi, A., Bíró, T. (eds) TRP Channels in Drug Discovery. Methods in Pharmacology and Toxicology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-095-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-095-3_4

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-094-6

  • Online ISBN: 978-1-62703-095-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics