Skip to main content

Microarrays for Universal Detection and Identification of Phytoplasmas

  • Protocol
  • First Online:
Phytoplasma

Part of the book series: Methods in Molecular Biology ((MIMB,volume 938))

Abstract

Detection and identification of phytoplasmas is a laborious process often involving nested PCR followed by restriction enzyme analysis and fine-resolution gel electrophoresis. To improve throughput, other methods are needed. Microarray technology offers a generic assay that can potentially detect and differentiate all types of phytoplasmas in one assay. The present protocol describes a microarray-based method for identification of phytoplasmas to 16Sr group level.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Deng S, Hiruki C (1991) Amplification of 16S rRNA genes from culturable and nonculturable mollicutes. J Microbiol Meth 14:53–61

    Article  CAS  Google Scholar 

  2. Smart CD et al (1996) Phytoplasma-specific PCR primers based on sequences of the 16S–23S rRNA spacer region. Appl Environ Microbiol 62:2988–2993

    PubMed  CAS  Google Scholar 

  3. Gundersen DE, Lee I-M (1996) Ultrasensitive detection of phytoplasmas by nested-PCR assays using two universal primer pairs. Phytopathol Mediterr 35:144–151

    CAS  Google Scholar 

  4. Lee I-M et al (1998) Revised classification scheme of phytoplasmas based an RFLP analyses of 16S rRNA and ribosomal protein gene sequences. Int J Syst Bacteriol 48:1153–1169

    Article  CAS  Google Scholar 

  5. François C et al (2006) Towards specific diagnosis of plant-parasitic nematodes using DNA oligonucleotide microarray technology: a case study with the quarantine species Meloidogyne chitwoodi. Mol Cell Probes 20:64–69

    Article  PubMed  Google Scholar 

  6. Nicolaisen M et al (2005) An oligonucleotide microarray for the identification and differentiation of trichothecene producing and non-producing Fusarium species occurring on cereal grain. J Microbiol Meth 62:57–69

    Article  CAS  Google Scholar 

  7. Lievens B et al (2006) Detecting single nucleotide polymorphisms using DNA arrays for plant pathogen diagnosis. FEMS Microbiol Lett 255:129–139

    Article  PubMed  CAS  Google Scholar 

  8. Tambong JT et al (2006) Oligonucleotide array for identification and detection of Pythium species. Appl Environ Microbiol 72:2691–2706

    Article  PubMed  CAS  Google Scholar 

  9. Pelludat C, Duffy B, Frey JE (2009) Design and development of a DNA microarray for rapid identification of multiple European quarantine phytopathogenic bacteria. Eur J Plant Pathol 125:413–423

    Article  CAS  Google Scholar 

  10. Fessehaie A, De Boer SH, Lévesque CA (2003) An oligonucleotide array for the identification and differentiation of bacteria pathogenic on potato. Phytopathology 93:262–269

    Article  PubMed  CAS  Google Scholar 

  11. Nicolaisen M, Bertaccini A (2007) An oligonucleotide microarray-based assay for identification of phytoplasma 16S ribosomal groups. Plant Pathol 56:332–336

    Article  CAS  Google Scholar 

  12. Boonham N, Tomlinson J, Mumford R (2007) Microarrays for rapid identification of plant viruses. Annu Rev Phytopathol 45:307–328

    Article  PubMed  CAS  Google Scholar 

  13. Dufva M (2005) Fabrication of high quality microarrays. Biomol Eng 22:173–184

    Article  PubMed  CAS  Google Scholar 

  14. Zhang L, Hurek T, Reinhold-Hurek B (2005) Position of the fluorescent label is a crucial factor determining signal intensity in microarray hybridizations. Nucleic Acids Res 33:e166

    Article  PubMed  Google Scholar 

  15. Franke-Whittle IH et al (2006) Comparison of different labeling methods for the production of labeled target DNA for microarray hybridization. J Microbiol Meth 65:117–126

    Article  CAS  Google Scholar 

  16. Vora GJ et al (2008) Comparison of detection and signal amplification methods for DNA microarrays. Mol Cell Probes 22:294–300

    Article  PubMed  CAS  Google Scholar 

  17. Prince JP et al (1993) Molecular detection of diverse mycoplasmalike organisms (MLOs) associated with grapevine yellows and their classification with aster yellows, X-disease, and elm yellows MLOs. Phytopathology 83:1130–1137

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mogens Nicolaisen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Nicolaisen, M., Nyskjold, H., Bertaccini, A. (2013). Microarrays for Universal Detection and Identification of Phytoplasmas. In: Dickinson, M., Hodgetts, J. (eds) Phytoplasma. Methods in Molecular Biology, vol 938. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-089-2_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-089-2_19

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-088-5

  • Online ISBN: 978-1-62703-089-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics