Skip to main content

Whole-Cell Patch-Clamp Recording of Voltage-Sensitive Ca2+ Channel Currents in Single Cells: Heterologous Expression Systems and Neurones

  • Protocol
  • First Online:
Book cover Calcium Signaling Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 937))

Abstract

Voltage-sensitive calcium channels (VSCC) are vital to the normal physiology of many cell types, including neurones, skeletal, cardiac and smooth muscle cells, heart pacemaker tissue and endocrine cells. Whole-cell recording is a functional electrophysiological assay that allows real-time measurement of macroscopic VSCC activity at the level of single cells. Using this technique, it is possible to probe the molecular physiology, pharmacology, and biophysics of VSCC proteins with a level of precision rarely surpassed in cell biological studies. With best practice voltage-dependent gating behaviors of VSCCs can be interrogated with temporal resolution <100 ms. These advantages have commonly been exploited using recombinant channels heterologously expressed in cell-lines, where the molecular identity of the channel under study can be precisely defined, and also in native cell types freshly isolated from intact tissue using enzymes. The latter approach is especially valuable for study of adult brain neurons as these cells are not amenable to primary culture. We also describe a method with which VSCCs can be studied in nucleated macropatches derived from neurons without the use of enzymes. Although automated patch-clamp systems are now available they have limitations, and manual whole-cell recording of VSCC currents remains an expert technique requiring intelligent, conative experimentation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ertel EA, Campbell KP, Harpold MM, Hofmann F, Mori Y, Perez-Reyes E, Schwartz A, Snutch TP, Tanabe T, Birnbaumer L, Tsien RW, Catterall WA (2000) Nomenclature of voltage-gated calcium channels. Neuron 25:533–535

    Article  PubMed  CAS  Google Scholar 

  2. Sakmann B, Neher E (1983) Single-channel recording. Plenum, New York, NY

    Google Scholar 

  3. Hamill OP, Marty A, Neher E, Sakmann B, Sigworth FJ (1981) Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch 391:85–100

    Article  PubMed  CAS  Google Scholar 

  4. Levis RA, Rae JL (1992) Constructing a patch clamp setup. Methods Enzymol 207:14–66

    Article  PubMed  CAS  Google Scholar 

  5. Levis RA, Rae JL (1998) Low-noise patch-clamp techniques. Methods Enzymol 293:218–266

    Article  PubMed  CAS  Google Scholar 

  6. The Axon Guide. http://www.axon.com/MR_Axon_Guide.html

  7. Fenwick EM, Marty A, Neher E (1982) Sodium and calcium channels in bovine chromaffin cells. J Physiol 331:599–635

    PubMed  CAS  Google Scholar 

  8. Lux HD, Brown AM (1984) Patch and whole cell calcium currents recorded simultaneously in snail neurons. J Gen Physiol 83:727–750

    Article  PubMed  CAS  Google Scholar 

  9. Ikeda SR, Schofield GG, Weight FF (1986) Na+ and Ca2+ currents of acutely isolated adult rat nodose ganglion cells. J Neurophysiol 55:527–539

    PubMed  CAS  Google Scholar 

  10. Matteson DR, Armstrong CM (1984) Na and Ca channels in a transformed line of anterior pituitary cells. J Gen Physiol 83:371–394

    Article  PubMed  CAS  Google Scholar 

  11. Carbone E, Lux HD (1987) Kinetics and selectivity of a low-voltage-activated calcium current in chick and rat sensory neurones. J Physiol 396:547–570

    Google Scholar 

  12. Tsien RW, Bean BP, Hess P, Lansman JB, Nilius B, Nowycky MC (1986) Mechanisms of calcium channel modulation by beta-adrenergic calcium agonists. J Mol Cell Cardiol 18:691–710

    Article  PubMed  CAS  Google Scholar 

  13. Hille B (2001) Ion channels of excitable membranes. Sinauer, Sunderland, MA

    Google Scholar 

  14. Hess P, Lansman JB, Tsien RW (1984) Different modes of Ca channel gating behaviour favoured by dihydropyridine Ca agonists and antagonists. Nature 311:538–544

    Article  PubMed  CAS  Google Scholar 

  15. Bossu JL, Feltz A, Thomann JM (1985) Depolarization elicits two distinct calcium currents in vertebrate sensory neurones. Pflugers Arch 403:360–368

    Article  PubMed  CAS  Google Scholar 

  16. Dupont JL, Bossu JL, Feltz A (1986) Effect of internal calcium concentration on calcium currents in rat sensory neurones. Pflugers Arch 406:433–435

    Article  PubMed  CAS  Google Scholar 

  17. Llinás R, Sugimori M, Hillman DE, Cherksey B (1992) Distribution and functional significance of the P-type, voltage-dependent Ca2+ channels in the mammalian central nervous system. Trends Neurosci 15:351–355

    Article  PubMed  Google Scholar 

  18. Randall A, Tsien RW (1995) Pharmacological dissection of multiple types of Ca2+ channel currents in rat cerebellar granule neurons. J Neurosci 15:2995–3012

    PubMed  CAS  Google Scholar 

  19. Zhang JF, Randall AD, Ellinor PT, Horne WA, Sather WA, Tanabe T, Schwarz TL, Tsien RW (1993) Distinctive pharmacology and kinetics of cloned neuronal Ca2+ channels and their possible counterparts in mammalian CNS neurons. Neuropharmacology 32:1075–1088

    Article  PubMed  CAS  Google Scholar 

  20. Takahashi T, Forsythe ID, Tsujimoto T, Barnes-Davies M, Onodera K (1996) Presynaptic calcium current modulation by a metabotropic glutamate receptor. Science 274:594–597

    Article  PubMed  CAS  Google Scholar 

  21. Bischofberger J, Geiger JR, Jonas P (2002) Timing and efficacy of Ca2+ channel activation in hippocampal mossy fiber boutons. J Neurosci 22:10593–10602

    PubMed  CAS  Google Scholar 

  22. Stefani A, Pisani A, Mercuri NB, Bernardi G, Calabresi P (1994) Activation of metabotropic glutamate receptors inhibits calcium currents and GABA-mediated synaptic potentials in striatal neurons. J Neurosci 14:6734–6743

    PubMed  CAS  Google Scholar 

  23. Stefani A, Spadoni F, Bernardi G (1997) Differential inhibition by riluzole, lamotrigine, and phenytoin of sodium and calcium currents in cortical neurons: implications for neuroprotective strategies. Exp Neurol 147:115–122

    Article  PubMed  CAS  Google Scholar 

  24. Hainsworth AH, Spadoni F, Lavaroni F, Bernardi G, Stefani A (2001) Effects of extracellular pH on the interaction of sipatrigine and lamotrigine with high-voltage-activated (HVA) calcium channels in dissociated neurones of rat cortex. Neuropharmacology 40:784–791

    Article  PubMed  CAS  Google Scholar 

  25. Brown JT, Chin J, Leiser SC, Pangalos MN, Randall AD (2011) Altered intrinsic neuronal excitability and reduced Na(+) currents in a mouse model of Alzheimer’s disease. Neurobiol Aging 32:2109.e1–2109.e14

    Article  Google Scholar 

  26. Dempster J. Strathclyde software. http://innovol.sibs.strath.ac.uk/physpharm/ses.shtml

  27. Vasquez C, Navarro-Polanco RA, Huerta M, Trujillo X, Andrade F, Trujillo-Hernandez B, Hernandez L (2003) Effects of cannabinoids on endogenous K+ and Ca2+ currents in HEK293 cells. Can J Physiol Pharmacol 81:436–442

    Article  PubMed  CAS  Google Scholar 

  28. Berjukow S, Doring F, Froschmayr M, Grabner M, Glossmann H, Hering S (1996) Endogenous calcium channels in human embryonic kidney (HEK293) cells. Br J Pharmacol 118:748–754

    Article  PubMed  CAS  Google Scholar 

  29. Bleakman D, Bowman D, Bath CP, Brust PF, Johnson EC, Deal CR, Miller RJ, Ellis SB, Harpold MM, Hans M (1995) Characteristics of a human N-type calcium channel expressed in HEK293 cells. Neuropharmacology 34:753–765

    Article  PubMed  CAS  Google Scholar 

  30. McCool BA, Pin JP, Harpold MM, Brust PF, Stauderman KA, Lovinger DM (1998) Rat group I metabotropic glutamate receptors inhibit neuronal Ca2+ channels via multiple signal transduction pathways in HEK 293 cells. J Neurophysiol 79:379–391

    PubMed  CAS  Google Scholar 

  31. Pereverzev A, Klockner U, Henry M, Grabsch H, Vajna R, Olyschlager S, Viatchenko-Karpinski S, Schroder R, Hescheler J, Schneider T (1998) Structural diversity of the voltage-dependent Ca2+ channel alpha1E-subunit. Eur J Neurosci 10:916–925

    Article  PubMed  CAS  Google Scholar 

  32. McNaughton NC, Hainsworth AH, Green PJ, Randall AD (2000) Inhibition of recombinant low-voltage-activated Ca(2+) channels by the neuroprotective agent BW619C89 (Sipatrigine). Neuropharmacology 39:1247–1253

    Article  PubMed  CAS  Google Scholar 

  33. Hainsworth AH, McNaughton NC, Pereverzev A, Schneider T, Randall AD (2003) Actions of sipatrigine, 202 W92 and lamotrigine on R-type and T-type Ca2+ channel currents. Eur J Pharmacol 467:77–80

    Article  PubMed  CAS  Google Scholar 

  34. Zeilhofer HU, Swandulla D, Reeh PW, Kress M (1996) Ca2+ permeability of the sustained proton-induced cation current in adult rat dorsal root ganglion neurons. J Neurophysiol 76:2834–2840

    PubMed  CAS  Google Scholar 

  35. Neher E (1992) Correction for liquid junction potentials in patch clamp experiments. Methods Enzymol 207:123–131

    Article  PubMed  CAS  Google Scholar 

  36. Song WJ, Surmeier DJ (1996) Voltage-dependent facilitation of calcium channels in rat neostriatal neurons. J Neurophysiol 76:2290–2306

    PubMed  CAS  Google Scholar 

  37. Mody I, Salter MW, MacDonald JF (1989) Whole-cell voltage-clamp recordings in granule cells acutely isolated from hippocampal slices of adult or aged rats. Neurosci Lett 96:70–75

    Article  PubMed  CAS  Google Scholar 

  38. Matsuo S, Jang IS, Nabekura J, Akaike N (2003) Alpha 2-Adrenoceptor-mediated presynaptic modulation of GABAergic transmission in mechanically dissociated rat ventrolateral preoptic neurons. J Neurophysiol 89:1640–1648

    Article  PubMed  CAS  Google Scholar 

  39. Kameyama A, Yazawa K, Kaibara M, Ozono K, Kameyama M (1997) Run-down of the cardiac Ca2+ channel: characterization and restoration of channel activity by cytoplasmic factors. J Neurophysiol 433:547–556

    CAS  Google Scholar 

  40. Belles B, Malecot CO, Hescheler J, Trautwein W (1988) “Run-down” of the Ca current during long whole-cell recordings in guinea pig heart cells: role of phosphorylation and intracellular calcium. Pflugers Arch 411:353–360

    Article  PubMed  CAS  Google Scholar 

  41. Powers RK, Binder MD (2003) Persistent sodium and calcium currents in rat hypoglossal motoneurons. J Neurophysiol 89:615–624

    Article  PubMed  CAS  Google Scholar 

  42. Horn R, Marty A (1988) Muscarinic activation of ionic currents measured by a new whole-cell recording method. J Gen Physiol 92:145–159

    Article  PubMed  CAS  Google Scholar 

  43. Akaike N (1994) Glycine responses in rat CNS neurons studied with gramicidin perforated patch recording. Jpn J Physiol 44:S113–S118

    Article  PubMed  CAS  Google Scholar 

  44. McNaughton NC, Randall AD (1997) Electrophysiological properties of the human N-type Ca2+ channel: I. Channel gating in Ca2+, Ba2+ and Sr2+ containing solutions. Neuropharmacology 36:895–915

    Article  PubMed  CAS  Google Scholar 

  45. Scroggs RS, Fox AP (1992) Multiple Ca2+ currents elicited by action potential waveforms in acutely isolated adult rat dorsal root ganglion neurons. J Neurosci 12:1789–1801

    PubMed  CAS  Google Scholar 

  46. McNaughton NC, Bleakman D, Randall AD (1998) Electrophysiological characterisation of the human N-type Ca2+ channel II: activation and inactivation by physiological patterns of activity. Neuropharmacology 37:67–81

    Article  PubMed  CAS  Google Scholar 

  47. Warre RC, McNaughton NC, Randall AD (2002) Differential discrimination of fast and slow synaptic waveforms by two low-voltage-activated calcium channels. Neuroscience 110:375–388

    Article  PubMed  CAS  Google Scholar 

  48. Sather W, Dieudonné S, MacDonald JF, Ascher P (1992) Activation and desensitization of N-methyl-d-aspartate receptors in nucleated outside-out patches from mouse neurones. J Physiol 450:643–672

    PubMed  CAS  Google Scholar 

  49. Martina M, Jonas P (1997) Functional differences in Na+ channel gating between fast-spiking interneurones and principal neurones of rat hippocampus. J Physiol 505:593–603

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew D. Randall .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Brown, J., Hainsworth, A.H., Stefani, A., Randall, A.D. (2013). Whole-Cell Patch-Clamp Recording of Voltage-Sensitive Ca2+ Channel Currents in Single Cells: Heterologous Expression Systems and Neurones. In: Lambert, D., Rainbow, R. (eds) Calcium Signaling Protocols. Methods in Molecular Biology, vol 937. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-086-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-086-1_7

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-085-4

  • Online ISBN: 978-1-62703-086-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics