Skip to main content

Transgene-Like Animal Models Using Intronic MicroRNAs

  • Protocol
  • First Online:
MicroRNA Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 936))

Abstract

Transgenic animal models are valuable tools for testing gene functions and drug mechanisms in vivo. They are also the best similitude for a human body for etiological and pathological research of diseases. All pharmaceutically developed drugs must be proven to be safe and effective in animals before approval by the Food and Drug Administration to be used in clinical trials. To this end, the transgenic animal models of diseases serve as the front line of drug evaluation. However, there is currently no transgenic animal model for microRNA (miRNA) research. miRNAs, small single-stranded regulatory RNAs capable of silencing intracellular gene transcripts (mRNAs) that contain either complete or partial complementarity to the miRNA, are useful for the design of new therapies against cancer polymorphism and viral mutation. Recently, varieties of natural miRNAs have been found to derived from hairpin-like RNA precursors in almost all eukaryotes, including yeast (Schizosaccharomyces pombe), plant (Arabidopsis spp.), nematode (Caenorhabditis elegans), fly (Drosophila melanogaster), fish, mouse, and human, involving intracellular defense against viral infections and regulation of certain gene expressions during development. To facilitate the miRNA research in vivo, we have developed a state-of-the-art transgenic strategy for silencing specific genes in zebrafish, chicken, and mouse, using intronic miRNAs. By insertion of a hairpin-like pre-miRNA structure into the intron region of a gene, we have found that mature miRNAs were successfully transcribed by RNA polymerases type II (Pol II), coexpressed with the encoding gene transcript, and excised out of the encoding gene transcript by natural RNA splicing and processing mechanisms. In conjunction with retroviral transfection systems, the designed hairpin-like pre-miRNA construct was further tested to insert into the intron regions of a cellular gene for tissue-specific expression regulated by the gene promoter. Because the retroviral vectors were randomly integrated into the genome of its host cell, the most effective transgenic animal can be selected and propagated to be a stable transgenic line for future research. Here, we have shown for the first time that transgene-like animal models were generated using the intronic miRNA-expressing system described previously, which has been proven to be useful for both miRNA research and in vivo evaluation of miRNA-associated target gene functions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lin SL, Ying SY (2004) Novel RNAi therapy—intron-derived microRNA drugs. Drug Des Rev 1:247–255

    CAS  Google Scholar 

  2. Tuschl T, Borkhardt A (2002) Small interfering RNAs: a revolutionary tool for the analysis of gene function and gene therapy. Mol Interv 2:158–167

    Article  PubMed  CAS  Google Scholar 

  3. Nelson P, Kiriakidou M, Sharma A, Maniataki E, Mourelatos Z (2003) The microRNA world: small is mighty. Trends Biochem Sci 28:534–539

    Article  PubMed  CAS  Google Scholar 

  4. Ying SY, Lin SL (2005) Intronic microRNA (miRNA). Biochem Biophys Res Commun 326:515–520

    Article  PubMed  CAS  Google Scholar 

  5. Hall IM, Shankaranarayana GD, Noma K, Ayoub N, Cohen A, Grewal SI (2002) Establishment and maintenance of a heterochromatin domain. Science 297:2232–2237

    Article  PubMed  CAS  Google Scholar 

  6. Llave C, Xie Z, Kasschau KD, Carrington JC (2002) Cleavage of Scarecrow-like mRNA targets directed by a class of Arabidopsis miRNA. Science 297:2053–2056

    Article  PubMed  CAS  Google Scholar 

  7. Rhoades MW, Reinhart BJ, Lim LP, Burge CB, Bartel B, Bartel DP (2002) Prediction of plant microRNA targets. Cell 110:513–520

    Article  PubMed  CAS  Google Scholar 

  8. Lee RC, Feibaum RL, Ambros V (1993) The C. elegans heterochromic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75:843–854

    Article  PubMed  CAS  Google Scholar 

  9. Reinhart BJ, Slack FJ, Basson M, Pasquinelli AE, Bettinger JC, Rougvie AE, Horvitz HR, Ruvkun G (2000) The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 403:901–906

    Article  PubMed  CAS  Google Scholar 

  10. Lau NC, Lim LP, Weinstein EG, Bartel DP (2001) An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science 294:858–862

    Article  PubMed  CAS  Google Scholar 

  11. Brennecke J, Hipfner DR, Stark A, Russell RB, Cohen SM (2003) Bantam encodes a developmentally regulated microRNA that controls cell proliferation and regulates the proapoptotic gene hid in Drosophila. Cell 113:25–36

    Article  PubMed  CAS  Google Scholar 

  12. Xu P, Vernooy SY, Guo M, Hay BA (2003) The Drosophila microRNA Mir-14 suppresses cell death and is required for normal fat metabolism. Curr Biol 13:790–795

    Article  PubMed  CAS  Google Scholar 

  13. Lagos-Quintana M, Rauhut R, Meyer J, Borkhardt A, Tuschl T (2003) New microRNAs from mouse and human. RNA 9:175–179

    Article  PubMed  CAS  Google Scholar 

  14. Mourelatos Z, Dostie J, Paushkin S, Sharma A, Charroux B, Abel L, Rappsilber J, Mann M, Dreyfuss G (2002) miRNPs: a novel class of ribonucleoproteins containing numerous microRNAs. Genes Dev 16:720–728

    Article  PubMed  CAS  Google Scholar 

  15. Zeng Y, Wagner EJ, Cullen BR (2002) Both natural and designed micro RNAs can inhibit the expression of cognate mRNAs when expressed in human cells. Mol Cell 9:1327–1333

    Article  PubMed  CAS  Google Scholar 

  16. Hirose Y, Manley JL (2000) RNA polymerase II and the integration of nuclear events. Genes Dev 14:1415–1429

    PubMed  CAS  Google Scholar 

  17. Kramer A (1996) The structure and function of proteins involved in mammalian pre-mRNA splicing. Annu Rev Biochem 65:367–409

    Article  PubMed  CAS  Google Scholar 

  18. Miyagishi M, Taira K (2002) U6 promoter-driven siRNAs with four uridine 3’ overhangs efficiently suppress targeted gene expression in mammalian cells. Nat Biotechnol 20:497–500

    Article  PubMed  CAS  Google Scholar 

  19. Lee NS, Dohjima T, Bauer G, Li H, Li MJ, Ehsani A, Salvaterra P, Rossi J (2002) Expression of small interfering RNAs targeted against HIV-1 rev transcripts in human cells. Nat Biotechnol 20:500–505

    PubMed  CAS  Google Scholar 

  20. Paul CP, Good PD, Winer I, Engelke DR (2002) Effective expression of small interfering RNA in human cells. Nat Biotechnol 20:505–508

    Article  PubMed  CAS  Google Scholar 

  21. Xia H, Mao Q, Paulson HL, Davidson BL (2002) siRNA-mediated gene silencing in vitro and in vivo. Nat Biotechnol 20:1006–1010

    Article  PubMed  CAS  Google Scholar 

  22. McCaffrey AP, Meuse L, Pham TT, Conklin DS, Hannon GJ, Kay MA (2002) RNA interference in adult mice. Nature 418:38–39

    Article  PubMed  CAS  Google Scholar 

  23. Gunnery S, Ma Y, Mathews MB (1999) Termination sequence requirements vary among genes transcribed by RNA polymerase III. J Mol Biol 286:745–757

    Article  PubMed  CAS  Google Scholar 

  24. Schramm L, Hernandez N (2002) Recruitment of RNA polymerase III to its target promoters. Genes Dev 16:2593–2620

    Article  PubMed  CAS  Google Scholar 

  25. Sledz CA, Holko M, de Veer MJ, Silverman RH, Williams BR (2003) Activation of the interferon system by short-interfering RNAs. Nat Cell Biol 5:834–839

    Article  PubMed  CAS  Google Scholar 

  26. Lin SL, Ying SY (2004) Combinational therapy for HIV-1 eradication and vaccination. Int J Oncol 24:81–88

    PubMed  Google Scholar 

  27. Stark GR, Kerr IM, Williams BR, Silverman RH, Schreiber RD (1998) How cells respond to interferons. Annu Rev Biochem 67:227–264

    Article  PubMed  CAS  Google Scholar 

  28. Lin SL, Ying SY (2004) New drug design for gene therapy—taking advantage of introns. Lett Drug Des Discov 1:256–262

    Article  CAS  Google Scholar 

  29. Lin SL, Chang D, Wu DY, Ying SY (2003) A novel RNA splicing-mediated gene silencing mechanism potential for genome evolution. Biochem Biophys Res Commun 310:754–760

    Article  PubMed  CAS  Google Scholar 

  30. Lin SL, Chang D, Ying SY (2005) Asymmetry of intronic pre-miRNA structures in functional RISC assembly. Gene 356:32–38

    Article  PubMed  CAS  Google Scholar 

  31. Ambros V, Lee RC, Lavanway A, Williams PT, Jewell D (2003) MicroRNAs and other tiny endogenous RNAs in C. elegans. Curr Biol 13:807–818

    Article  PubMed  CAS  Google Scholar 

  32. Butz S, Larue L (1995) Expression of catenins during mouse embryonic development and in adult tissues. Cell Adhes Commun 3:337–352

    Article  PubMed  CAS  Google Scholar 

  33. Filipovska J, Konarska MM (2000) Specific HDV RNA-templated transcription by pol II in vitro. RNA 6:41–54

    Article  PubMed  CAS  Google Scholar 

  34. Modahl LE, Macnaughton TB, Zhu N, Johnson DL, Lai MM (2000) RNA-dependent replication and transcription of hepatitis delta virus RNA involve distinct cellular RNA polymerases. Mol Cell Biol 20:6030–6039

    Article  PubMed  CAS  Google Scholar 

  35. Abzhanov A, Protas M, Grant BR, Grant PR, Tabin CJ (2004) Bmp4 and morphological variation of beaks in Darwin’s finches. Science 305:1462–1465

    Article  PubMed  CAS  Google Scholar 

  36. Wu P, Jiang TX, Suksaweang S, Widelitz RB, Chuong CM (2004) Molecular shaping of the beak. Science 305:1465–1466

    Article  PubMed  CAS  Google Scholar 

  37. Rodriguez A, Griffiths-Jones S, Ashurst JL, Bradley A (2004) Identification of mammalian microRNA host genes and transcription units. Genome Res 14:1902–1910

    Article  PubMed  CAS  Google Scholar 

  38. Clement JQ, Qian L, Kaplinsky N, Wilkinson MF (1999) The stability and fate of a spliced intron from vertebrate cells. RNA 5:206–220

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shi-Lung Lin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Lin, SL., Chang, SJ.E., Ying, SY. (2013). Transgene-Like Animal Models Using Intronic MicroRNAs. In: Ying, SY. (eds) MicroRNA Protocols. Methods in Molecular Biology, vol 936. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-083-0_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-083-0_22

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-082-3

  • Online ISBN: 978-1-62703-083-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics