Skip to main content

MicroRNA Expression During Neuronal Differentiation of Human Teratocarcinoma NTera2D1 and Mouse Embryonic Carcinoma P19 Cells

  • Protocol
  • First Online:
MicroRNA Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 936))

Abstract

MicroRNAs (miRNAs) are 21–23-nucleotide-long small noncoding RNAs, function as mediators in gene silencing, and play essential roles in gene regulation in development, differentiation, and proliferation. Hundreds of miRNAs have been found, and tissue-specific or organ-specific expression of miRNAs has been detected. Here, I describe procedures for detection of miRNAs in the course of neuronal differentiation of human teratocarcinoma NTera2D1 and mouse embryonic carcinoma P19 cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297

    Article  PubMed  CAS  Google Scholar 

  2. Denli AM, Tops BB, Plasterk RH, Ketting RF, Hannon GJ (2004) Processing of primary microRNAs by the Microprocessor complex. Nature 432:231–235

    Article  PubMed  CAS  Google Scholar 

  3. Lee Y, Ahn C, Han J, Choi H, Kim J, Yim J, Lee J, Provost P, Radmark O, Kim S et al (2003) The nuclear RNase III Drosha initiates microRNA processing. Nature 425:415–419

    Article  PubMed  CAS  Google Scholar 

  4. Hutvagner G, Zamore PD (2002) A microRNA in a multiple-turnover RNAi enzyme complex. Science 297:2056–2060

    Article  PubMed  CAS  Google Scholar 

  5. Krichevsky AM, King KS, Donahue CP, Khrapko K, Kosik KS (2003) A microRNA array reveals extensive regulation of microRNAs during brain development. RNA 9:1274–1281

    Article  PubMed  CAS  Google Scholar 

  6. Doench JG, Petersen CP, Sharp PA (2003) siRNAs can function as miRNAs. Genes Dev 17:438–442

    Article  PubMed  CAS  Google Scholar 

  7. Zeng Y, Yi R, Cullen BR (2003) MicroRNAs and small interfering RNAs can inhibit mRNA expression by similar mechanisms. Proc Natl Acad Sci USA 100:9779–9784

    Article  PubMed  CAS  Google Scholar 

  8. Liu CG, Calin GA, Meloon B, Gamliel N, Sevignani C, Ferracin M, Dumitru CD, Shimizu M, Zupo S, Dono M et al (2004) An oligonucleotide microchip for genome-wide microRNA profiling in human and mouse tissues. Proc Natl Acad Sci USA 101:9740–9744

    Article  PubMed  CAS  Google Scholar 

  9. Cheng AM, Byrom MW, Shelton J, Ford LP (2005) Antisense inhibition of human miRNAs and indications for an involvement of miRNA in cell growth and apoptosis. Nucleic Acids Res 33:1290–1297

    Article  PubMed  CAS  Google Scholar 

  10. Lagos-Quintana M, Rauhut R, Yalcin A, Meyer J, Lendeckel W, Tuschl T (2002) Identification of tissue-specific microRNAs from mouse. Curr Biol 12:735–739

    Article  PubMed  CAS  Google Scholar 

  11. Lee Y, Kim M, Han J, Yeom KH, Lee S, Baek SH, Kim VN (2004) MicroRNA genes are transcribed by RNA polymerase II. EMBO J 23:4051–4060

    Article  PubMed  CAS  Google Scholar 

  12. Ohnishi Y, Totoki Y, Toyoda A, Watanabe T, Yamamoto Y, Tokunaga K, Sakaki Y, Sasaki H, Hohjoh H (2010) Small RNA class transition from siRNA/piRNA to miRNA during pre-implantation mouse development. Nucleic Acids Res 38:5141–5151

    Article  PubMed  CAS  Google Scholar 

  13. Hohjoh H, Fukushima T (2007) Marked change in microRNA expression during neuronal differentiation of human teratocarcinoma NTera2D1 and mouse embryonal carcinoma P19 cells. Biochem Biophys Res Commun 362:360–367

    Article  PubMed  CAS  Google Scholar 

  14. Eda A, Tamura Y, Yoshida M, Hohjoh H (2009) Systematic gene regulation involving miRNAs during neuronal differentiation of mouse P19 embryonic carcinoma cell. Biochem Biophys Res Commun 388:648–653

    Article  PubMed  CAS  Google Scholar 

  15. Hohjoh H, Fukushima T (2007) Expression ­profile analysis of microRNA (miRNA) in mouse central nervous system using a new miRNA detection system that examines hybridization signals at every step of washing. Gene 391:39–44

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The author would like to thank Akiko Eda and Tatsunobu Fukushima for their helpful assistance. This work was supported by a research grant from the Ministry of Health, Labor, and Welfare of Japan and by a Grant-in-Aid from the Japan Society for the Promotion of Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hirohiko Hohjoh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Hohjoh, H. (2013). MicroRNA Expression During Neuronal Differentiation of Human Teratocarcinoma NTera2D1 and Mouse Embryonic Carcinoma P19 Cells. In: Ying, SY. (eds) MicroRNA Protocols. Methods in Molecular Biology, vol 936. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-083-0_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-083-0_20

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-082-3

  • Online ISBN: 978-1-62703-083-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics