Skip to main content

Gene Silencing In Vitro and In Vivo Using Intronic MicroRNAs

  • Protocol
  • First Online:
MicroRNA Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 936))

Abstract

MicroRNAs (miRNAs), small single-stranded regulatory RNAs capable of interfering with intracellular messenger RNAs (mRNAs) that contain either complete or partial complementarity, are useful for the design of new therapies against cancer polymorphism and viral mutation. Numerous miRNAs have been reported to induce RNA interference (RNAi), a posttranscriptional gene-silencing mechanism. Recent evidence also indicates that they are involved in the transcriptional regulation of genome activities. They were first discovered in Caenorhabditis elegans as native RNA fragments that modulate a wide range of genetic regulatory pathways during embryonic development and are now recognized as small gene silencers transcribed from the noncoding regions of a genome. In humans, nearly 97% of the genome is noncoding DNA, which varies from one individual to another, and changes in these sequences are frequently noted to manifest in clinical and circumstantial malfunction; for example, type 2 myotonic dystrophy and fragile X syndrome were found to be associated with miRNAs derived from introns. Intronic miRNA is a new class of miRNAs derived from the processing of nonprotein-coding regions of gene transcripts. The intronic miRNAs differ uniquely from previously described intergenic miRNAs in the requirement of RNA polymerase (Pol)-II and spliceosomal components for its biogenesis. Several kinds of intronic miRNAs have been identified in C. elegans, mouse, and human cells; however, their functions and applications have not been reported. Here, we show for the first time that intron-derived miRNA is not only able to induce RNAi in mammalian cells, but also in fish, chicken embryos, and adult mice cells, demonstrating the evolutionary preservation of this gene regulation system in vivo. These miRNA-mediated animal models provide artificial means to reproduce the mechanisms of miRNA-induced disease in vivo and will shed further light on miRNA-related therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ambros V (2004) The functions of animal microRNAs. Nature 350:431–355

    Google Scholar 

  2. Nelson P, Kiriakidou M, Sharma A, Maniataki E, Mourelatos Z (2003) The microRNA world: small is mighty. Trends Biochem Sci 28:534–539

    Article  PubMed  CAS  Google Scholar 

  3. Ying SY, Lin SL (2005) Intronic microRNA (miRNA). Biochem Biophys Res Commun 326:515–520

    Article  PubMed  CAS  Google Scholar 

  4. Lin SL, Ying SY (2004) Novel RNAi therapy—Intron-derived microRNA drugs. Drug Design Rev 1:247–255

    Article  CAS  Google Scholar 

  5. Tuschl T, Borkhardt A (2002) Small interfering RNAs: a revolutionary tool for the analysis of gene function and gene therapy. Mol Interv 2:158–167

    Article  PubMed  CAS  Google Scholar 

  6. Ambros V (1989) A hierarchy of regulatory genes controls a larva regulatory specificity, the notion that target-site recogni- to-adult developmental switch in C. elegans. Cell 57:49–57

    Article  PubMed  CAS  Google Scholar 

  7. Hall IM, Shankaranarayana GD, Noma K, Ayoub N, Cohen A, Grewal SI (2002) Establishment and maintenance of a heterochromatin domain. Science 297:2232–2237

    Article  PubMed  CAS  Google Scholar 

  8. Llave C, Xie Z, Kasschau KD, Carrington JC (2002) Cleavage of Scarecrow-like mRNA targets directed by a class of Arabidopsis miRNA. Science 297:2053–2056

    Article  PubMed  CAS  Google Scholar 

  9. Rhoades MW, Reinhart BJ, Lim LP, Burge CB, Bartel B, Bartel DP (2002) Prediction of plant microRNA targets. Cell 110:513–520

    Article  PubMed  CAS  Google Scholar 

  10. Lee RC, Feibaum RL, Ambros V (1993) The C. elegans heterochromic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75:843–854

    Article  PubMed  CAS  Google Scholar 

  11. Reinhart BJ, Slack FJ, Basson M, Pasquinelli AE, Bettinger JC, Rougvie AE, Horvitz HR, Ruvkun G (2000) The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 403:901–906

    Article  PubMed  CAS  Google Scholar 

  12. Lau NC, Lim LP, Weinstein EG, Bartel DP (2001) An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science 294:858–862

    Article  PubMed  CAS  Google Scholar 

  13. Brennecke J, Hipfner DR, Stark A, Russell RB, Cohen SM (2003) Bantam encodes a developmentally regulated microRNA that controls cell proliferation and regulates the proapoptotic gene hid in Drosophila. Cell 113:25–36

    Article  PubMed  CAS  Google Scholar 

  14. Xu P, Vernooy SY, Guo M, Hay BA (2003) The Drosophila microRNA Mir-14 suppresses cell death and is required for normal fat metabolism. Curr Biol 13:790–795

    Article  PubMed  CAS  Google Scholar 

  15. Lagos-Quintana M, Rauhut R, Meyer J, Borkhardt A, Tuschl T (2003) New microRNAs from mouse and human. RNA 9:175–179

    Article  PubMed  CAS  Google Scholar 

  16. Mourelatos Z, Dostie J, Paushkin S, Sharma A, Charroux B, Abel L, Rappsilber J, Mann M, Dreyfuss G (2002) miRNPs: a novel class of ribonucleoproteins containing numerous microRNAs. Genes Dev 16:720–728

    Article  PubMed  CAS  Google Scholar 

  17. Zeng Y, Wagner EJ, Cullen BR (2002) Both natural and designed micro RNAs can inhibit the expression of cognate mRNAs when expressed in human cells. Mol Cell 9:1327–1333

    Article  PubMed  CAS  Google Scholar 

  18. Zeng Y, Yi R, Cullen BR (2003) MicroRNAs and small interfering RNAs can inhibit mRNA expression by similar mechanisms. Proc Natl Acad Sci USA 100:9779–9784

    Article  PubMed  CAS  Google Scholar 

  19. Carthew RW (2001) Gene silencing by double-stranded RNA. Curr Opin Cell Biol 13:244–248

    Article  PubMed  CAS  Google Scholar 

  20. Lin SL, Chang D, Wu DY, Ying SY (2003) A novel RNA splicing-mediated gene silencing mechanism potential for genome evolution. Biochem Biophys Res Commun 310:754–760

    Article  PubMed  CAS  Google Scholar 

  21. Lin SL, Chang D, Ying SY (2005) Asymmetry of intronic pri-miRNA structures in functional RISC assembly. Gene 356:32–8

    Article  PubMed  CAS  Google Scholar 

  22. Ying SY, Lin SL (2004) Intron-derived microRNAs–fine tuning of gene functions. Gene 342:25–28

    Article  PubMed  CAS  Google Scholar 

  23. Kramer A (1996) The structure and function of proteins involved in mammalian pre-mRNA splicing. Annu Rev Biochem 65:367–409

    Article  PubMed  CAS  Google Scholar 

  24. Clement JQ, Qian L, Kaplinsky N, Wilkinson MF (1999) The stability and fate of a spliced intron from vertebrate cells. RNA 5:206–220

    Article  PubMed  CAS  Google Scholar 

  25. Nott A, Meislin SH, Moore MJ (2003) A quantitative analysis of intron effects on mammalian gene expression. RNA 9:607–617

    Article  PubMed  CAS  Google Scholar 

  26. Lee Y, Kim M, Han J, Yeom KH, Lee S, Baek SH, Kim VN (2004) MicroRNA genes are transcribed by RNA polymerase II. EMBO J 23:4051–4060

    Article  PubMed  CAS  Google Scholar 

  27. Lee Y, Ahn C, Han J, Choi H, Kim J, Yim J, Lee J, Provost P, Radmark O, Kim S, Kim VN (2003) The nuclear RNase III Drosha initiates microRNA processing. Nature 425:415–419

    Article  PubMed  CAS  Google Scholar 

  28. Lund E, Guttinger S, Calado A, Dahlberg JE, Kutay U (2004) Nuclear export of microRNA precursors. Science 303:95–98

    Article  PubMed  CAS  Google Scholar 

  29. Yi R, Qin Y, Macara IG, Cullen BR (2003) Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev 17:3011–3016

    Article  PubMed  CAS  Google Scholar 

  30. Schwarz DS, Hutvagner G, Du T, Xu Z, Aronin N, Zamore PD (2003) Asymmetry in the assembly of the RNAi enzyme complex. Cell 115:199–208

    Article  PubMed  CAS  Google Scholar 

  31. Khvorova A, Reynolds A, Jayasena SD (2003) Functional siRNAs and miRNAs exhibit strand bias. Cell 115:209–216

    Article  PubMed  CAS  Google Scholar 

  32. Lee YS, Nakahara K, Pham JW, Kim K, He Z, Sontheimer EJ, Carthew RW (2004) Distinct roles for Drosophila Dicer-1 and Dicer-2 in the siRNA/miRNA silencing pathways. Cell 117:69–81

    Article  PubMed  CAS  Google Scholar 

  33. Tang G (2005) siRNA and miRNA: an insight into RISCs. Trends Biochem Sci 30:106–114

    Article  PubMed  CAS  Google Scholar 

  34. Rodriguez A, Griffiths-Jones S, Ashurst JL, Bradley A (2004) Identification of mammalian microRNA host genes and transcription units. Genome Res 14:1902–1910

    Article  PubMed  CAS  Google Scholar 

  35. Ambros V, Lee RC, Lavanway A, Williams PT, Jewell D (2003) MicroRNAs and other tiny endogenous RNAs in C. elegans. Curr Biol 13:807–818

    Article  PubMed  CAS  Google Scholar 

  36. Liquori CL, Ricker K, Moseley ML, Jacobsen JF, Kress W, Naylor SL, Day JW, Ranum LPW (2001) Myotinic dystrophy type 2 caused by a CCTG expansion in intron 1 of ZNF9. Science 293:864–867

    Article  PubMed  CAS  Google Scholar 

  37. Jin P, Alisch RS, Warren ST (2004) RNA and microRNAs in fragile X mental retardation. Nat Cell Biol 6:1048–1053

    Article  PubMed  CAS  Google Scholar 

  38. Eberhart DE, Malter HE, Feng Y, Warren ST (1996) The fragile X mental retardation protein is a ribonucleoprotein containing both nuclear localization and nuclear export signals. Hum Mol Genet 5:1083–1091

    Article  PubMed  CAS  Google Scholar 

  39. Lin SL, Ying SY (2004) New drug design for gene therapy – Taking Advantage of Introns. Lett Drug Design Discovery 1:256–262

    Article  CAS  Google Scholar 

  40. Zhang G, Taneja KL, Singer RH, Green MR (1994) Localization of pre-mRNA splicing in mammalian nuclei. Nature 372:809–812

    PubMed  CAS  Google Scholar 

  41. Ghosh S, Garcia-Blanco MA (2000) Coupled in vitro synthesis and splicing of RNA polymerase II transcripts. RNA 6:1325–1334

    Article  PubMed  CAS  Google Scholar 

  42. Stark GR, Kerr IM, Williams BR, Silverman RH, Schreiber RD (1998) How cells respond to interferons. Annu Rev Biochem 67:227–264

    Article  PubMed  CAS  Google Scholar 

  43. Sledz CA, Holko M, de Veer MJ, Silverman RH, Williams BR (2003) Activation of the interferon system by short-interfering RNAs. Nat Cell Biol 5:834–839

    Article  PubMed  CAS  Google Scholar 

  44. Boden D, Pusch O, Silbermann R, Lee F, Tucker L, Ramratnam B (2004) Enhanced gene silencing of HIV-1 specific siRNA using microRNA designed hairpins. Nucleic Acid Res 32:1154–1158

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shi-Lung Lin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Lin, SL., Ying, SY. (2013). Gene Silencing In Vitro and In Vivo Using Intronic MicroRNAs. In: Ying, SY. (eds) MicroRNA Protocols. Methods in Molecular Biology, vol 936. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-083-0_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-083-0_17

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-082-3

  • Online ISBN: 978-1-62703-083-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics