Skip to main content

Generation of Transgenic X. laevis Models of Retinal Degeneration

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 935))

Abstract

Transgenic models are invaluable tools for researching retinal degenerative disease mechanisms. However, they are time-consuming and expensive to generate and maintain. We have developed an alternative to transgenic rodent models of retinal degeneration using transgenic Xenopus laevis. We have optimized this system to allow rapid analysis of transgene effects in primary transgenic animals, thereby providing an alternative to establishing transgenic lines, and simultaneously allowing rigorous comparisons between the effects of different transgenes.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Moritz OL, Tam BM (2010) Recent insights into the mechanisms underlying light-dependent retinal degeneration from X. laevis models of retinitis pigmentosa. Adv Exp Med Biol 664:509–515. doi:10.1007/978-1-4419-1399-9_58

    Article  PubMed  CAS  Google Scholar 

  2. Tam BM, Qazalbash A, Lee HC, Moritz OL (2010) The dependence of retinal degeneration caused by the rhodopsin P23H mutation on light exposure and vitamin A deprivation. Invest Ophthalmol Vis Sci 51(3):1327–1334

    Article  PubMed  Google Scholar 

  3. Hamm LM, Tam BM, Moritz OL (2009) Controlled rod cell ablation in transgenic Xenopus laevis. Invest Ophthalmol Vis Sci 50(2):885–892. doi:iovs.08-2337(pii)

    Article  PubMed  Google Scholar 

  4. Tam BM, Qazalbash A, Lee HC, Moritz OL (2010) The dependence of retinal degeneration caused by the rhodopsin P23H mutation on light exposure and vitamin a deprivation. Invest Ophthalmol Vis Sci 51(3):1327–1334. doi:iovs.09-4123(pii)

    Article  PubMed  Google Scholar 

  5. Tam BM, Moritz OL (2009) The role of rhodopsin glycosylation in protein folding, trafficking, and light-sensitive retinal degeneration. J Neurosci 29(48):15145–15154. doi:29/48/15145(pii)

    Article  PubMed  CAS  Google Scholar 

  6. Tam BM, Moritz OL (2007) Dark rearing rescues P23H rhodopsin-induced retinal degeneration in a transgenic Xenopus laevis model of retinitis pigmentosa: a chromophore-dependent mechanism characterized by production of N-terminally truncated mutant rhodopsin. J Neurosci 27(34):9043–9053. doi:27/34/9043(pii)

    Article  PubMed  CAS  Google Scholar 

  7. Tam BM, Xie G, Oprian DD, Moritz OL (2006) Mislocalized rhodopsin does not require activation to cause retinal degeneration and neurite outgrowth in Xenopus laevis. J Neurosci 26(1):203–209. doi:26/1/203(pii)

    Article  PubMed  CAS  Google Scholar 

  8. Tam BM, Moritz OL (2006) Characterization of rhodopsin P23H-induced retinal degeneration in a Xenopus laevis model of retinitis pigmentosa. Invest Ophthalmol Vis Sci 47(8):3234–3241. doi:47/8/3234(pii)

    Article  PubMed  Google Scholar 

  9. Moritz OL, Tam BM, Hurd LL, Peranen J, Deretic D, Papermaster DS (2001) Mutant rab8 Impairs docking and fusion of rhodopsin-bearing post-Golgi membranes and causes cell death of transgenic Xenopus rods. Mol Biol Cell 12(8):2341–2351

    PubMed  CAS  Google Scholar 

  10. Mazelova J, Astuto-Gribble L, Inoue H, Tam BM, Schonteich E, Prekeris R, Moritz OL, Randazzo PA, Deretic D (2009) Ciliary targeting motif VxPx directs assembly of a trafficking module through Arf4. EMBO J 28(3):183–192. doi:emboj2008267(pii)

    Article  PubMed  CAS  Google Scholar 

  11. Tam BM, Moritz OL, Papermaster DS (2004) The C terminus of peripherin/rds participates in rod outer segment targeting and alignment of disk incisures. Mol Biol Cell 15(4):2027–2037. doi:10.1091/mbc.E03-09-0650

    Article  PubMed  CAS  Google Scholar 

  12. Ritter LM, Boesze-Battaglia K, Tam BM, Moritz OL, Khattree N, Chen SC, Goldberg AF (2004) Uncoupling of photoreceptor peripherin/rds fusogenic activity from biosynthesis, subunit assembly, and targeting: a potential mechanism for pathogenic effects. J Biol Chem 279(38):39958–39967. doi:10.1074/jbc.M403943200

    Article  PubMed  CAS  Google Scholar 

  13. Peterson JJ, Tam BM, Moritz OL, Shelamer CL, Dugger DR, McDowell JH, Hargrave PA, Papermaster DS, Smith WC (2003) Arrestin migrates in photoreceptors in response to light: a study of arrestin localization using an arrestin-GFP fusion protein in transgenic frogs. Exp Eye Res 76(5):553–563

    Article  PubMed  CAS  Google Scholar 

  14. Loewen CJ, Moritz OL, Tam BM, Papermaster DS, Molday RS (2003) The role of subunit assembly in peripherin-2 targeting to rod photoreceptor disk membranes and retinitis pigmentosa. Mol Biol Cell 14(8):3400–3413. doi:10.1091/mbc.E03-02-0077

    Article  PubMed  CAS  Google Scholar 

  15. Moritz OL, Tam BM, Papermaster DS, Nakayama T (2001) A functional rhodopsin-green fluorescent protein fusion protein localizes correctly in transgenic Xenopus laevis retinal rods and is expressed in a time-dependent pattern. J Biol Chem 276(30):28242–28251. doi:10.1074/jbc.M101476200

    Article  PubMed  CAS  Google Scholar 

  16. Tam BM, Moritz OL, Hurd LB, Papermaster DS (2000) Identification of an outer segment targeting signal in the COOH terminus of rhodopsin using transgenic Xenopus laevis. J Cell Biol 151(7):1369–1380

    Article  PubMed  CAS  Google Scholar 

  17. Baker SA, Haeri M, Yoo P, Gospe SM 3rd, Skiba NP, Knox BE, Arshavsky VY (2008) The outer segment serves as a default destination for the trafficking of membrane proteins in photoreceptors. J Cell Biol 183(3):485–498

    Article  PubMed  CAS  Google Scholar 

  18. Kizhatil K, Baker SA, Arshavsky VY, Bennett V (2009) Ankyrin-G promotes cyclic nucleotide-gated channel transport to rod photoreceptor sensory cilia. Science 323(5921):1614–1617

    Article  PubMed  CAS  Google Scholar 

  19. Luo W, Marsh-Armstrong N, Rattner A, Nathans J (2004) An outer segment localization signal at the C terminus of the photoreceptor-specific retinol dehydrogenase. J Neurosci 24(11):2623–2632

    Article  PubMed  CAS  Google Scholar 

  20. Langmann T, Lai CC, Weigelt K, Tam BM, Warneke-Wittstock R, Moritz OL, Weber BH (2008) CRX controls retinal expression of the X-linked juvenile retinoschisis (RS1) gene. Nucleic Acids Res 36(20):6523–6534. doi:gkn737(pii)

    Article  PubMed  CAS  Google Scholar 

  21. Moritz OL, Peck A, Tam BM (2002) Xenopus laevis red cone opsin and Prph2 promoters allow transgene expression in amphibian cones, or both rods and cones. Gene 298(2):173–182

    Article  PubMed  CAS  Google Scholar 

  22. Mani SS, Besharse JC, Knox BE (1999) Immediate upstream sequence of arrestin directs rod-specific expression in Xenopus. J Biol Chem 274(22):15590–15597

    Article  PubMed  CAS  Google Scholar 

  23. Zhu X, Ma B, Babu S, Murage J, Knox BE, Craft CM (2002) Mouse cone arrestin gene characterization: promoter targets expression to cone photoreceptors. FEBS Lett 524(1–3):116–122

    Article  PubMed  CAS  Google Scholar 

  24. Lerner LE, Gribanova YE, Whitaker L, Knox BE, Farber DB (2002) The rod cGMP-phosphodiesterase beta-subunit promoter is a specific target for Sp4 and is not activated by other Sp proteins or CRX. J Biol Chem 277(29):25877–25883. doi:10.1074/jbc.M201407200

    Article  PubMed  CAS  Google Scholar 

  25. Babu S, McIlvain V, Whitaker SL, Knox BE (2006) Conserved cis-elements in the Xenopus red opsin promoter necessary for cone-specific expression. FEBS Lett 580(5):1479–1484. doi:S0014-5793(06)00150-5(pii)

    Article  PubMed  CAS  Google Scholar 

  26. Whitaker SL, Knox BE (2004) Conserved transcriptional activators of the Xenopus rhodopsin gene. J Biol Chem 279(47):49010–49018. doi:10.1074/jbc.M406080200

    Article  PubMed  CAS  Google Scholar 

  27. Viczian AS, Verardo M, Zuber ME, Knox BE, Farber DB (2004) Conserved transcriptional regulation of a cone phototransduction gene in vertebrates. FEBS Lett 577(1–2):259–264. doi:S0014579304012281(pii)

    Article  PubMed  CAS  Google Scholar 

  28. Kroll KL, Amaya E (1996) Transgenic Xenopus embryos from sperm nuclear transplantations reveal FGF signaling requirements during gastrulation. Development 122(10):3173–3183

    PubMed  CAS  Google Scholar 

  29. Moritz OL, Biddle KE, Tam BM (2002) Selection of transgenic Xenopus laevis using antibiotic resistance. Transgenic Res 11(3):315–319

    Article  PubMed  CAS  Google Scholar 

  30. Wen XH, Shen L, Brush RS, Michaud N, Al-Ubaidi MR, Gurevich VV, Hamm HE, Lem J, Dibenedetto E, Anderson RE, Makino CL (2009) Overexpression of rhodopsin alters the structure and photoresponse of rod photoreceptors. Biophys J 96(3):939–950. doi:S0006-3495(08)00054-4(pii)

    Article  PubMed  CAS  Google Scholar 

  31. Tan E, Wang Q, Quiambao AB, Xu X, Qtaishat NM, Peachey NS, Lem J, Fliesler SJ, Pepperberg DR, Naash MI, Al-Ubaidi MR (2001) The relationship between opsin overexpression and photoreceptor degeneration. Invest Ophthalmol Vis Sci 42(3):589–600

    PubMed  CAS  Google Scholar 

  32. Chung JH, Whiteley M, Felsenfeld G (1993) A 5′ element of the chicken beta-globin domain serves as an insulator in human erythroid cells and protects against position effect in Drosophila. Cell 74(3):505–514. doi:0092-8674(93)80052-G(pii)

    Article  PubMed  CAS  Google Scholar 

  33. Allen BG, Weeks DL (2006) Using phiC31 integrase to make transgenic Xenopus laevis embryos. Nat Protoc 1(3):1248–1257. doi:nprot.2006.183(pii)

    Article  PubMed  CAS  Google Scholar 

  34. Allen BG, Weeks DL (2005) Transgenic Xenopus laevis embryos can be generated using phiC31 integrase. Nat Methods 2(12):975–979. doi:nmeth814(pii)

    Article  PubMed  CAS  Google Scholar 

  35. Ogino H, McConnell WB, Grainger RM (2006) High-throughput transgenesis in Xenopus using I-SceI meganuclease. Nat Protoc 1(4):1703–1710. doi:nprot.2006.208(pii)

    Article  PubMed  CAS  Google Scholar 

  36. Ogino H, McConnell WB, Grainger RM (2006) Highly efficient transgenesis in Xenopus tropicalis using I-SceI meganuclease. Mech Dev 123(2):103–113. doi:S0925-4773(05)00191-7(pii)

    Article  PubMed  CAS  Google Scholar 

  37. Lee DC, Xu J, Sarunic MV, Moritz OL (2010) Fourier domain optical coherence tomography as a noninvasive means for in vivo detection of retinal degeneration in Xenopus laevis tadpoles. Invest Ophthalmol Vis Sci 51(2):1066–1070. doi:iovs.09-4260(pii)

    Article  PubMed  Google Scholar 

  38. Amaya E, Kroll K (2010) Production of transgenic Xenopus laevis by restriction enzyme mediated integration and nuclear transplantation. J Vis Exp (42). doi:10.3791/2010

  39. Chesneau A, Sachs LM, Chai N, Chen Y, Du Pasquier L, Loeber J, Pollet N, Reilly M, Weeks DL, Bronchain OJ (2008) Transgenesis procedures in Xenopus. Biol Cell 100(9):503–521. doi:BC20070148(pii)

    Article  PubMed  CAS  Google Scholar 

  40. Murray AW (1991) Cell cycle extracts. Methods Cell Biol 36:581–605

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was funded by the Canadian Institutes for Health Research, and the Foundation Fighting Blindness (Canada).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Orson L. Moritz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Tam, B.M., Lai, C.CL., Zong, Z., Moritz, O.L. (2012). Generation of Transgenic X. laevis Models of Retinal Degeneration. In: Weber, B., LANGMANN, T. (eds) Retinal Degeneration. Methods in Molecular Biology, vol 935. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-080-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-080-9_8

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-079-3

  • Online ISBN: 978-1-62703-080-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics