Skip to main content

Assessment of Mitochondrial Damage in Retinal Cells and Tissues Using Quantitative Polymerase Chain Reaction for Mitochondrial DNA Damage and Extracellular Flux Assay for Mitochondrial Respiration Activity

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 935))

Abstract

Mitochondrial dysfunction and genomic instability are associated with a number of retinal pathologies including age-related macular degeneration, diabetic retinopathy, and glaucoma. Consequences of mitochondrial dysfunction within cells include elevation of the rate of ROS production due to damage of electron transport chain proteins, mitochondrial DNA (mtDNA) damage, and loss of metabolic capacity. Here we introduce the quantitative polymerase chain reaction assay (QPCR) and extracellular flux assay (XF) as powerful techniques to study mitochondrial behavior. The QPCR technique is a gene-specific assay developed to analyze the DNA damage repair response in mitochondrial and nuclear genomes. QPCR has proved particularly valuable for the measurement of oxidative-induced mtDNA damage and kinetics of mtDNA repair. To assess the functional consequence of mitochondrial oxidative damage, real-time changes in cellular bioenergetics of cell monolayers can be measured with a Seahorse Biosciences XF24 analyzer. The advantages and limitations of these procedures will be discussed and detailed methodologies provided with particular emphasis on retinal oxidative stress.

Authors Stuart G. Jarrett and Bärbel Rohrer contributed equally to this work.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Scheffler IE (2001) A century of mitochondrial research: achievements and perspectives. Mitochondrion 1:3–31

    Article  PubMed  CAS  Google Scholar 

  2. Ayala-Torres S, Chen Y, Svoboda T, Rosenblatt J, Van Houten B (2000) Analysis of gene-specific DNA damage and repair using quantitative polymerase chain reaction. Methods 22:135–147

    Article  PubMed  CAS  Google Scholar 

  3. Jarrett SG, Lin H, Godley BF, Boulton ME (2008) Mitochondrial DNA damage and its potential role in retinal degeneration. Prog Retin Eye Res 27:596–607

    Article  PubMed  CAS  Google Scholar 

  4. Liang FQ, Godley BF (2003) Oxidative stress-induced mitochondrial DNA damage in human retinal pigment epithelial cells: a possible mechanism for RPE aging and age-related macular degeneration. Exp Eye Res 76:397–403

    Article  PubMed  CAS  Google Scholar 

  5. Lin H, Xu H, Liang FQ, Liang H, Gupta P, Havey AN, Boulton ME, Godley BF (2011) Mitochondrial DNA damage and repair in RPE associated with aging and age-related macular degeneration. Invest Ophthalmol Vis Sci 52:3521–3529

    Article  PubMed  CAS  Google Scholar 

  6. Carelli V, Ross-Cisneros FN, Sadun AA (2004) Mitochondrial dysfunction as a cause of optic neuropathies. Prog Retin Eye Res 23:53–89

    Article  PubMed  CAS  Google Scholar 

  7. Ballinger SW, Van Houten B, Jin GF, Conklin CA, Godley BF (1999) Hydrogen peroxide causes significant mitochondrial DNA damage in human RPE cells. Exp Eye Res 68:765–772

    Article  PubMed  CAS  Google Scholar 

  8. Kalinowski DP, Illenye S, Van Houten B (1992) Analysis of DNA damage and repair in murine leukemia L1210 cells using a quantitative polymerase chain reaction assay. Nucleic Acids Res 20:3485–3494

    Article  PubMed  CAS  Google Scholar 

  9. Liang FQ, Alssadi R, Morehead P, Awasthi YC, Godley BF (2005) Enhanced expression of glutathione-S-transferase A1-1 protects against oxidative stress in human retinal pigment epithelial cells. Exp Eye Res 80:113–119

    Article  PubMed  CAS  Google Scholar 

  10. Liang FQ, Green L, Wang C, Alssadi R, Godley BF (2004) Melatonin protects human retinal pigment epithelial (RPE) cells against oxidative stress. Exp Eye Res 78:1069–1075

    Article  PubMed  CAS  Google Scholar 

  11. Santos JH, Meyer JN, Mandavilli BS, Van Houten B (2006) Quantitative PCR-based measurement of nuclear and mitochondrial DNA damage and repair in mammalian cells. Methods Mol Biol 314:183–199

    Article  PubMed  CAS  Google Scholar 

  12. Stuart GR, Santos JH, Strand MK, Van Houten B, Copeland WC (2006) Mitochondrial and nuclear DNA defects in Saccharomyces cerevisiae with mutations in DNA polymerase gamma associated with progressive external ophthalmoplegia. Hum Mol Genet 15:363–374

    Article  PubMed  CAS  Google Scholar 

  13. Van Houten B, Cheng S, Chen Y (2000) Measuring gene-specific nucleotide excision repair in human cells using quantitative amplification of long targets from nanogram quantities of DNA. Mutat Res 460:81–94

    Article  PubMed  Google Scholar 

  14. Van Houten B, Gamper H, Sancar A, Hearst JE (1987) DNase I footprint of ABC excinuclease. J Biol Chem 262:13180–13187

    PubMed  Google Scholar 

  15. Yakes FM, Van Houten B (1997) Mitochondrial DNA damage is more extensive and persists longer than nuclear DNA damage in human cells following oxidative stress. Proc Natl Acad Sci U S A 94:514–519

    Article  PubMed  CAS  Google Scholar 

  16. Godley BF, Shamsi FA, Liang FQ, Jarrett SG, Davies S, Boulton M (2005) Blue light induces mitochondrial DNA damage and free radical production in epithelial cells. J Biol Chem 280:21061–21066

    Article  PubMed  CAS  Google Scholar 

  17. Yang M, Jarrett SG, Craven R, Kaetzel DM (2009) YNK1, the yeast homolog of human metastasis suppressor NM23, is required for repair of UV radiation- and etoposide-induced DNA damage. Mutat Res 660:74–78

    Article  PubMed  CAS  Google Scholar 

  18. Miller H, Grollman AP (1997) Kinetics of DNA polymerase I (Klenow fragment exo-) activity on damaged DNA templates: effect of proximal and distal template damage on DNA synthesis. Biochemistry 36:15336–15342

    Article  PubMed  CAS  Google Scholar 

  19. Lim KS, Jeyaseelan K, Whiteman M, Jenner A, Halliwell B (2005) Oxidative damage in mitochondrial DNA is not extensive. Ann N Y Acad Sci 1042:210–220

    Article  PubMed  CAS  Google Scholar 

  20. Jarrett SG, Boulton ME (2005) Antioxidant up-regulation and increased nuclear DNA protection play key roles in adaptation to oxidative stress in epithelial cells. Free Radic Biol Med 38:1382–1391

    Article  PubMed  CAS  Google Scholar 

  21. Okawa H, Sampath AP, Laughlin SB, Fain GL (2008) ATP consumption by mammalian rod photoreceptors in darkness and in light. Curr Biol 18:1917–1921

    Article  PubMed  CAS  Google Scholar 

  22. Strauss O (2005) The retinal pigment epithelium in visual function. Physiol Rev 85: 845–881

    Article  PubMed  CAS  Google Scholar 

  23. Ames A 3rd, Li YY, Heher EC, Kimble CR (1992) Energy metabolism of rabbit retina as related to function: high cost of Na+ transport. J Neurosci 12:840–853

    PubMed  CAS  Google Scholar 

  24. Eklund SE, Taylor D, Kozlov E, Prokop A, Cliffel DE (2004) A microphysiometer for simultaneous measurement of changes in extracellular glucose, lactate, oxygen, and acidification rate. Anal Chem 76:519–527

    Article  PubMed  CAS  Google Scholar 

  25. Wiley C, Beeson C (2002) Continuous measurement of glucose utilization in heart myoblasts. Anal Biochem 304:139–146

    Article  PubMed  CAS  Google Scholar 

  26. Ferrick DA, Neilson A, Beeson C (2008) Advances in measuring cellular bioenergetics using extracellular flux. Drug Discov Today 13:268–274

    Article  PubMed  CAS  Google Scholar 

  27. Sharma AK, Rohrer B (2007) Sustained elevation of intracellular cGMP causes oxidative stress triggering calpain-mediated apoptosis in photoreceptor degeneration. Curr Eye Res 32:259–269

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by NIH grants EY019688 and EY021626 (M.E.B.) and a Foundation Fighting Blindness Wynn-Gund Translational Research Acceleration grant (B.R.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael E. Boulton .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Jarrett, S.G., Rohrer, B., Perron, N.R., Beeson, C., Boulton, M.E. (2012). Assessment of Mitochondrial Damage in Retinal Cells and Tissues Using Quantitative Polymerase Chain Reaction for Mitochondrial DNA Damage and Extracellular Flux Assay for Mitochondrial Respiration Activity. In: Weber, B., LANGMANN, T. (eds) Retinal Degeneration. Methods in Molecular Biology, vol 935. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-080-9_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-080-9_16

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-079-3

  • Online ISBN: 978-1-62703-080-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics