Skip to main content

TRPML Channels in Function, Disease, and Prospective Therapies

  • Protocol
  • First Online:
TRP Channels in Drug Discovery

Part of the book series: Methods in Pharmacology and Toxicology ((MIPT))

  • 931 Accesses

Abstract

The transient receptor potential mucolipin (TRPML) subfamily of transient receptor potential cation channels consists of three members (TRPML1-3) that function at various stages of endocytosis. Conventional research in the TRPML field suggests that dysfunction along these endocytic stages underlies the severe psychomotor impairment in mucolipidosis type IV (MLIV). However, recent studies ­intimate that TRPMLs may be implicated in other neuropathological disorders as well. This review follows the historical development of TRPML research from the clinical description of the first MLIV patient until present-day characterization of TRPML1-based defects in MLIV on the molecular and cell biological ­levels. In addition, the aberrant role of TRPML3 in varitint-waddler mouse pathology is elucidated and the normal function of the protein and its paralogs are described. TRPML electrophysiology, pharmacology, and animal models are discussed and TRPML-associated systemic and neurological disorders, not including MLIV, are also addressed. Recently, a number of prospective TRPML-based therapies have been proposed in the treatment of these disorders. These prospects are carefully considered here as well. Altogether, the aforementioned descriptions aim to highlight the transformation of TRPML research from a single discipline, single gene, and single disorder field into a multidisciplinary, multigene endeavor with wide application to therapeutic treatment of several neurobiological disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 159.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 209.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 209.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cloudman AM, Bunker LE Jr (1945) The varitint-waddler mouse: a dominant mutation in Mus musculus. J Hered 36:259–263

    Google Scholar 

  2. Lane PW (1972) Two new mutations in linkage group XVI of the house mouse. Flaky tail and varitint-waddler-J. J Hered 63:135–140

    PubMed  CAS  Google Scholar 

  3. Berman ER et al (1974) Congenital corneal clouding with abnormal systemic storage bodies: a new variant of mucolipidosis. J Pediatr 84:519–526

    Article  PubMed  CAS  Google Scholar 

  4. Amir N, Zlotogora J, Bach G (1987) Mucolipidosis type IV: clinical spectrum and natural history. Pediatrics 79:953–959

    PubMed  CAS  Google Scholar 

  5. Zeevi DA, Frumkin A, Bach G (2007) TRPML and lysosomal function. Biochim Biophys Acta 1772:851–858

    Article  PubMed  CAS  Google Scholar 

  6. Wakabayashi K et al (2011) Mucolipidosis type IV: an update. Mol Genet Metab 104(3): 206–213

    Article  PubMed  CAS  Google Scholar 

  7. Altarescu G et al (2002) The neurogenetics of mucolipidosis type IV. Neurology 59: 306–313

    Article  PubMed  CAS  Google Scholar 

  8. Alroy J, Ucci AA (2006) Skin biopsy: a useful tool in the diagnosis of lysosomal storage diseases. Ultrastruct Pathol 30:489–503

    Article  PubMed  Google Scholar 

  9. Slaugenhaupt SA et al (1999) Mapping of the mucolipidosis type IV gene to chromosome 19p and definition of founder haplotypes. Am J Hum Genet 65:773–778

    Article  PubMed  CAS  Google Scholar 

  10. Bargal R et al (2000) Identification of the gene causing mucolipidosis type IV. Nat Genet 26:118–123

    Article  PubMed  CAS  Google Scholar 

  11. Bassi MT et al (2000) Cloning of the gene encoding a novel integral membrane protein, mucolipidin-and identification of the two major founder mutations causing mucolipidosis type IV. Am J Hum Genet 67:1110–1120

    PubMed  CAS  Google Scholar 

  12. Sun M et al (2000) Mucolipidosis type IV is caused by mutations in a gene encoding a novel transient receptor potential channel. Hum Mol Genet 9:2471–2478

    Article  PubMed  CAS  Google Scholar 

  13. Kiselyov K et al (2005) TRP-ML1 is a lysosomal monovalent cation channel that undergoes proteolytic cleavage. J Biol Chem 280: 43218–43223

    Article  PubMed  CAS  Google Scholar 

  14. Zeevi DA et al (2009) A potentially dynamic lysosomal role for the endogenous TRPML proteins. J Pathol 219:153–162

    Article  PubMed  CAS  Google Scholar 

  15. Bach G (2001) Mucolipidosis type IV. Mol Genet Metab 73:197–203

    Article  PubMed  CAS  Google Scholar 

  16. Bargal R et al (2001) Mucolipidosis type IV: novel MCOLN1 mutations in Jewish and non-Jewish patients and the frequency of the disease in the Ashkenazi Jewish population. Hum Mutat 17:397–402

    Article  PubMed  CAS  Google Scholar 

  17. Kim HJ, Jackson T, Noben-Trauth K (2003) Genetic analyses of the mouse deafness mutations varitint-waddler (Va) and jerker (Espnje). J Assoc Res Otolaryngol 4:83–90

    Article  PubMed  Google Scholar 

  18. Di PF et al (2002) Mutations in Mcoln3 associated with deafness and pigmentation defects in varitint-waddler (Va) mice. Proc Natl Acad Sci USA 99:14994–14999

    Article  CAS  Google Scholar 

  19. van Aken AF et al (2008) TRPML3 mutations cause impaired mechano-electrical transduction and depolarization by an inward-rectifier cation current in auditory hair cells of varitint-waddler mice. J Physiol 586:5403–5418

    Article  PubMed  CAS  Google Scholar 

  20. Xu H et al (2007) Activating mutation in a mucolipin transient receptor potential channel leads to melanocyte loss in varitint-waddler mice. Proc Natl Acad Sci USA 104: 18321–18326

    Article  PubMed  CAS  Google Scholar 

  21. Grimm C et al (2007) A helix-breaking mutation in TRPML3 leads to constitutive activity underlying deafness in the varitint-waddler mouse. Proc Natl Acad Sci USA 104: 19583–19588

    Article  PubMed  CAS  Google Scholar 

  22. Kim HJ et al (2007) Gain-of-function mutation in TRPML3 causes the mouse varitint-waddler phenotype. J Biol Chem 282: 36138–36142

    Article  PubMed  CAS  Google Scholar 

  23. Nagata K et al (2008) The varitint-waddler (Va) deafness mutation in TRPML3 generates constitutive, inward rectifying currents and causes cell degeneration. Proc Natl Acad Sci USA 105:353–358

    Article  PubMed  CAS  Google Scholar 

  24. Grimm C, Jors S, Heller S (2009) Life and death of sensory hair cells expressing constitutively active TRPML3. J Biol Chem 284: 13823–13831

    Article  PubMed  CAS  Google Scholar 

  25. Kim HJ et al (2008) A novel mode of TRPML3 regulation by extracytosolic PH absent in the varitint-waddler phenotype. EMBO J 27:1197–1205

    Article  PubMed  CAS  Google Scholar 

  26. Kim HJ et al (2010) Properties of the TRPML3 channel pore and its stable expansion by the varitint-waddler-causing mutation. J Biol Chem 285:16513–16520

    Article  PubMed  CAS  Google Scholar 

  27. Steel KP (2002) Varitint-waddler: a double whammy for hearing. Proc Natl Acad Sci USA 99:14613–14615

    Article  PubMed  CAS  Google Scholar 

  28. Jors S et al (2010) Genetic inactivation of Trpml3 does not lead to hearing and vestibular impairment in mice. PLoS One 5:e14317

    Article  PubMed  CAS  Google Scholar 

  29. Slaugenhaupt SA (2002) The molecular basis of mucolipidosis type IV. Curr Mol Med 2:445–450

    Article  PubMed  CAS  Google Scholar 

  30. Bach G, Cohen MM, Kohn G (1975) Abnormal ganglioside accumulation in cultured fibroblasts from patients with mucolipidosis IV. Biochem Biophys Res Commun 66:1483–1490

    Article  PubMed  CAS  Google Scholar 

  31. Bach G et al (1977) Mucopolysaccharide accumulation in cultured skin fibroblasts derived from patients with mucolipidosis IV. Am J Hum Genet 29:610–618

    PubMed  CAS  Google Scholar 

  32. Bargal R, Bach G (1988) Phospholipids ­accumulation in mucolipidosis IV cultured fibroblasts. J Inherit Metab Dis 11:144–150

    Article  PubMed  CAS  Google Scholar 

  33. Caimi L et al (1982) Mucolipidosis IV, a sialolipidosis due to ganglioside sialidase deficiency. J Inherit Metab Dis 5:218–224

    Article  PubMed  CAS  Google Scholar 

  34. Chen CS, Bach G, Pagano RE (1998) Abnormal transport along the lysosomal pathway in mucolipidosis, type IV disease. Proc Natl Acad Sci USA 95:6373–6378

    Article  PubMed  CAS  Google Scholar 

  35. Crandall BF et al (1982) Review article: mucolipidosis IV. Am J Med Genet 12:301–308

    Article  PubMed  CAS  Google Scholar 

  36. Bargal R, Bach G (1997) Mucolipidosis type IV: abnormal transport of lipids to lysosomes. J Inherit Metab Dis 20:625–632

    Article  PubMed  CAS  Google Scholar 

  37. Bach G, Chen CS, Pagano RE (1999) Elevated lysosomal pH in mucolipidosis type IV cells. Clin Chim Acta 280:173–179

    Article  PubMed  CAS  Google Scholar 

  38. Dong XP et al (2008) The type IV mucolipidosis-associated protein TRPML1 is an endolysosomal iron release channel. Nature 455: 992–996

    Article  PubMed  CAS  Google Scholar 

  39. Eichelsdoerfer JL et al (2010) Zinc dyshomeostasis is linked with the loss of mucolipidosis IV-associated TRPML1 ion channel. J Biol Chem 285:34304–34308

    Article  PubMed  CAS  Google Scholar 

  40. Kiselyov K et al (2011) TRPML: transporters of metals in lysosomes essential for cell survival? Cell Calcium 50:288–294

    Article  PubMed  CAS  Google Scholar 

  41. Soyombo AA et al (2006) TRP-ML1 regulates lysosomal pH and acidic lysosomal lipid hydrolytic activity. J Biol Chem 281: 7294–7301

    Article  PubMed  CAS  Google Scholar 

  42. Goldin E et al (1999) Mucolipidosis IV consists of one complementation group. Proc Natl Acad Sci USA 96:8562–8566

    Article  PubMed  CAS  Google Scholar 

  43. Cheng X et al (2010) Mucolipins: intracellular TRPML1-3 channels. FEBS Lett 584: 2013–2021

    Article  PubMed  CAS  Google Scholar 

  44. Kurz T et al (2008) Lysosomes in iron metabolism, ageing and apoptosis. Histochem Cell Biol 129:389–406

    Article  PubMed  CAS  Google Scholar 

  45. Kurz T, Eaton JW, Brunk UT (2011) The role of lysosomes in iron metabolism and recycling. Int J Biochem Cell Biol 43(12): 1686–1697

    Article  PubMed  CAS  Google Scholar 

  46. Curcio-Morelli C et al (2010) Macroautophagy is defective in mucolipin-1-deficient mouse neurons. Neurobiol Dis 40:370–377

    Article  PubMed  CAS  Google Scholar 

  47. Vergarajauregui S et al (2008) Autophagic dysfunction in mucolipidosis type IV patients. Hum Mol Genet 17:2723–2737

    Article  PubMed  CAS  Google Scholar 

  48. Venugopal B et al (2007) Neurologic, gastric, and opthalmologic pathologies in a murine model of mucolipidosis type IV. Am J Hum Genet 81:1070–1083

    Article  PubMed  CAS  Google Scholar 

  49. Chandra M et al (2011) A role for the Ca2+ channel TRPML1 in gastric acid secretion, based on analysis of knockout mice. Gastroenterology 140:857–867

    Article  PubMed  CAS  Google Scholar 

  50. Schiffmann R et al (1998) Constitutive achlorhydria in mucolipidosis type IV. Proc Natl Acad Sci USA 95:1207–1212

    Article  PubMed  CAS  Google Scholar 

  51. Micsenyi MC et al (2009) Neuropathology of the Mcoln1(-/-) knockout mouse model of mucolipidosis type IV. J Neuropathol Exp Neurol 68:125–135

    Article  PubMed  CAS  Google Scholar 

  52. Venkatachalam K et al (2008) Motor deficit in a Drosophila model of mucolipidosis type IV due to defective clearance of apoptotic cells. Cell 135:838–851

    Article  PubMed  CAS  Google Scholar 

  53. Schaheen L, Dang H, Fares H (2006) Basis of lethality in C. elegans lacking CUP-5, the mucolipidosis type IV orthologue. Dev Biol 293:382–391

    Article  PubMed  Google Scholar 

  54. Fares H, Greenwald I (2001) Regulation of endocytosis by CUP-5, the Caenorhabditis elegans mucolipin-1 homolog. Nat Genet 28:64–68

    PubMed  CAS  Google Scholar 

  55. Treusch S et al (2004) Caenorhabditis elegans functional orthologue of human protein H-mucolipin-1 is required for lysosome biogenesis. Proc Natl Acad Sci USA 101: 4483–4488

    Article  PubMed  CAS  Google Scholar 

  56. Campbell EM, Fares H (2010) Roles of CUP-5, the Caenorhabditis elegans orthologue of human TRPML1, in lysosome and gut granule biogenesis. BMC Cell Biol 11:40

    Article  PubMed  CAS  Google Scholar 

  57. Sun T et al (2011) CUP-5, the C. elegans ortholog of the mammalian lysosomal channel protein MLN1/TRPML1, is required for proteolytic degradation in autolysosomes. Autophagy 7:1308–1315

    Article  PubMed  CAS  Google Scholar 

  58. Pryor PR et al (2006) Mucolipin-1 is a lysosomal membrane protein required for intracellular lactosylceramide traffic. Traffic 7:1388–1398

    Article  PubMed  CAS  Google Scholar 

  59. Thompson EG et al (2007) Lysosomal trafficking functions of mucolipin-1 in murine macrophages. BMC Cell Biol 8:54

    Article  PubMed  CAS  Google Scholar 

  60. Chen JL, Ahluwalia JP, Stamnes M (2002) Selective effects of calcium chelators on anterograde and retrograde protein transport in the cell. J Biol Chem 277:35682–35687

    Article  PubMed  CAS  Google Scholar 

  61. Hay JC (2007) Calcium: a fundamental regulator of intracellular membrane fusion? EMBO Rep 8:236–240

    Article  PubMed  CAS  Google Scholar 

  62. Pryor PR et al (2000) The role of intraorganellar Ca(2+) in late endosome-lysosome heterotypic fusion and in the reformation of lysosomes from hybrid organelles. J Cell Biol 149:1053–1062

    Article  PubMed  CAS  Google Scholar 

  63. Luzio JP, Bright NA, Pryor PR (2007) The role of calcium and other ions in sorting and delivery in the late endocytic pathway. Biochem Soc Trans 35:1088–1091

    Article  PubMed  CAS  Google Scholar 

  64. Luzio JP, Pryor PR, Bright NA (2007) Lysosomes: fusion and function. Nat Rev Mol Cell Biol 8:622–632

    Article  PubMed  CAS  Google Scholar 

  65. Dong XP et al (2010) PI(3,5)P(2) controls membrane trafficking by direct activation of mucolipin Ca(2+) release channels in the endolysosome. Nat Commun 1:38

    Article  PubMed  CAS  Google Scholar 

  66. LaPlante JM et al (2002) Identification and characterization of the single channel function of human mucolipin-1 implicated in mucolipidosis type IV, a disorder affecting the lysosomal pathway. FEBS Lett 532:183–187

    Article  PubMed  CAS  Google Scholar 

  67. LaPlante JM et al (2004) Functional links between mucolipin-1 and Ca2+  -dependent membrane trafficking in mucolipidosis IV. Biochem Biophys Res Commun 322: 1384–1391

    Article  PubMed  CAS  Google Scholar 

  68. Zhang F et al (2009) TRP-ML1 functions as a lysosomal NAADP-sensitive Ca2+ release channel in coronary arterial myocytes. J Cell Mol Med 13:3174–3185

    Article  PubMed  Google Scholar 

  69. Andrews NW (2000) Regulated secretion of conventional lysosomes. Trends Cell Biol 10: 316–321

    Article  PubMed  CAS  Google Scholar 

  70. Rodriguez A et al (1997) Lysosomes behave as Ca2+  -regulated exocytic vesicles in fibroblasts and epithelial cells. J Cell Biol 137:93–104

    Article  PubMed  CAS  Google Scholar 

  71. Rodriguez A et al (1999) CAMP regulates Ca2+  -dependent exocytosis of lysosomes and lysosome-mediated cell invasion by trypanosomes. J Biol Chem 274:16754–16759

    Article  PubMed  CAS  Google Scholar 

  72. LaPlante JM et al (2006) Lysosomal exocytosis is impaired in mucolipidosis type IV. Mol Genet Metab 89:339–348

    Article  PubMed  CAS  Google Scholar 

  73. Dong XP et al (2009) Activating mutations of the TRPML1 channel revealed by proline-scanning mutagenesis. J Biol Chem 284:32040–32052

    Article  PubMed  CAS  Google Scholar 

  74. Sardiello M et al (2009) A gene network regulating lysosomal biogenesis and function. Science 325:473–477

    PubMed  CAS  Google Scholar 

  75. Medina DL et al (2011) Transcriptional activation of lysosomal exocytosis promotes cellular clearance. Dev Cell 21:421–430

    Article  PubMed  CAS  Google Scholar 

  76. Puertollano R, Kiselyov K (2009) TRPMLs: in sickness and in health. Am J Physiol Renal Physiol 296:F1245–F1254

    Article  PubMed  CAS  Google Scholar 

  77. Miedel MT et al (2008) Membrane traffic and turnover in TRP-ML1-deficient cells: a revised model for mucolipidosis type IV pathogenesis. J Exp Med 205:1477–1490

    Article  PubMed  CAS  Google Scholar 

  78. Kiselyov K, Muallem S (2008) Mitochondrial Ca2+ homeostasis in lysosomal storage diseases. Cell Calcium 44:103–111

    Article  PubMed  CAS  Google Scholar 

  79. Manzoni M et al (2004) Overexpression of wild-type and mutant mucolipin proteins in mammalian cells: effects on the late endocytic compartment organization. FEBS Lett 567: 219–224

    Article  PubMed  CAS  Google Scholar 

  80. Miedel MT et al (2006) Posttranslational cleavage and adaptor protein complex-dependent trafficking of mucolipin-1. J Biol Chem 281:12751–12759

    Article  PubMed  CAS  Google Scholar 

  81. Vergarajauregui S, Puertollano R (2006) Two di-leucine motifs regulate trafficking of mucolipin-1 to lysosomes. Traffic 7:337–353

    Article  PubMed  CAS  Google Scholar 

  82. Kim HJ et al (2009) The Ca(2+) channel TRPML3 regulates membrane trafficking and autophagy. Traffic 10:1157–1167

    Article  PubMed  CAS  Google Scholar 

  83. Cantiello HF et al (2005) Cation channel activity of mucolipin-1: the effect of calcium. Pflugers Arch 451:304–312

    Article  PubMed  CAS  Google Scholar 

  84. Raychowdhury MK et al (2004) Molecular pathophysiology of mucolipidosis type IV: pH dysregulation of the mucolipin-1 cation channel. Hum Mol Genet 13:617–627

    Article  PubMed  CAS  Google Scholar 

  85. Katz B, Minke B (2009) Drosophila photoreceptors and signaling mechanisms. Front Cell Neurosci 3:2

    Article  PubMed  CAS  Google Scholar 

  86. Zeevi DA et al (2010) Heteromultimeric TRPML channel assemblies play a crucial role in the regulation of cell viability models and starvation-induced autophagy. J Cell Sci 123: 3112–3124

    Article  PubMed  CAS  Google Scholar 

  87. Zhang F, Li PL (2007) Reconstitution and characterization of a nicotinic acid adenine dinucleotide phosphate (NAADP)-sensitive Ca2+ release channel from liver lysosomes of rats. J Biol Chem 282:25259–25269

    Article  PubMed  CAS  Google Scholar 

  88. Zhang F et al (2011) Reconstitution of lysosomal NAADP-TRP-ML1 signaling pathway and its function in TRP-ML1(-/-) cells. Am J Physiol Cell Physiol 301:C421–C430

    Article  PubMed  CAS  Google Scholar 

  89. Calcraft PJ et al (2009) NAADP mobilizes calcium from acidic organelles through two-pore channels. Nature 459:596–600

    Article  PubMed  CAS  Google Scholar 

  90. Yamaguchi S et al (2011) Transient receptor potential mucolipin 1 (TRPML1) and two-pore channels are functionally independent organellar ion channels. J Biol Chem 286:22934–22942

    Article  PubMed  CAS  Google Scholar 

  91. Grimm C et al (2010) Small molecule activators of TRPML3. Chem Biol 17:135–148

    Article  PubMed  CAS  Google Scholar 

  92. Cerny J et al (2004) The small chemical vacuolin-1 inhibits Ca(2+)-dependent lysosomal exocytosis but not cell resealing. EMBO Rep 5:883–888

    Article  PubMed  CAS  Google Scholar 

  93. Shen D, Wang X, Xu H (2011) Pairing phosphoinositides with calcium ions in endolysosomal dynamics: phosphoinositides control the direction and specificity of membrane trafficking by regulating the activity of calcium channels in the endolysosomes. Bioessays 33:448–457

    Article  PubMed  CAS  Google Scholar 

  94. Venugopal B et al (2009) Chaperone-mediated autophagy is defective in mucolipidosis type IV. J Cell Physiol 219:344–353

    Article  PubMed  CAS  Google Scholar 

  95. LaPlante JM et al (2011) The cation channel mucolipin-1 is a bifunctional protein that facilitates membrane remodeling via its serine lipase domain. Exp Cell Res 317:691–705

    Article  PubMed  CAS  Google Scholar 

  96. Vergarajauregui S, Martina JA, Puertollano R (2011) LAPTMs regulate lysosomal function and interact with mucolipin 1: new clues for understanding mucolipidosis type IV. J Cell Sci 124:459–468

    Article  PubMed  CAS  Google Scholar 

  97. Cabrita MA et al (1999) Mouse transporter protein, a membrane protein that regulates cellular multidrug resistance, is localized to lysosomes. Cancer Res 59:4890–4897

    PubMed  CAS  Google Scholar 

  98. Pak Y et al (2006) Transport of LAPTM5 to lysosomes requires association with the ubiquitin ligase Nedd4, but not LAPTM5 ubiquitination. J Cell Biol 175:631–645

    Article  PubMed  CAS  Google Scholar 

  99. Vergarajauregui S, Martina JA, Puertollano R (2009) Identification of the penta-EF-hand protein ALG-2 As a Ca2+  -dependent interactor of mucolipin-1. J Biol Chem 284:36357–36366

    Article  PubMed  CAS  Google Scholar 

  100. Abe K, Puertollano R (2011) Role of TRP channels in the regulation of the endosomal pathway. Physiology (Bethesda) 26:14–22

    Article  CAS  Google Scholar 

  101. Brailoiu E et al (2009) Essential requirement for two-pore channel 1 in NAADP-mediated calcium signaling. J Cell Biol 186:201–209

    Article  PubMed  CAS  Google Scholar 

  102. Venkatachalam K, Hofmann T, Montell C (2006) Lysosomal localization of TRPML3 depends on TRPML2 and the mucolipidosis-associated protein TRPML1. J Biol Chem 281:17517–17527

    Article  PubMed  CAS  Google Scholar 

  103. Curcio-Morelli C et al (2010) Functional multimerization of mucolipin channel proteins. J Cell Physiol 222:328–335

    Article  PubMed  CAS  Google Scholar 

  104. Karacsonyi C, Miguel AS, Puertollano R (2007) Mucolipin-2 localizes to the Arf6-associated pathway and regulates recycling of GPI-APs. Traffic 8:1404–1414

    Article  PubMed  CAS  Google Scholar 

  105. Lev S et al (2010) Constitutive activity of the human TRPML2 channel induces cell degeneration. J Biol Chem 285:2771–2782

    Article  PubMed  CAS  Google Scholar 

  106. Samie MA et al (2009) The tissue-specific expression of TRPML2 (MCOLN-2) gene is influenced by the presence of TRPML1. Pflugers Arch 459:79–91

    Article  PubMed  CAS  Google Scholar 

  107. Caplan S et al (2002) A tubular EHD1-containing compartment involved in the recycling of major histocompatibility complex class I molecules to the plasma membrane. EMBO J 21:2557–2567

    Article  PubMed  CAS  Google Scholar 

  108. Martina JA, Lelouvier B, Puertollano R (2009) The calcium channel mucolipin-3 is a novel regulator of trafficking along the endosomal pathway. Traffic 10:1143–1156

    Article  PubMed  CAS  Google Scholar 

  109. Lelouvier B, Puertollano R (2011) Mucolipin-3 regulates luminal calcium, acidification, and membrane fusion in the endosomal pathway. J Biol Chem 286:9826–9832

    Article  PubMed  CAS  Google Scholar 

  110. Atiba-Davies M, Noben-Trauth K (2007) TRPML3 and hearing loss in the varitint-waddler mouse. Biochim Biophys Acta 1772:1028–1031

    Article  PubMed  CAS  Google Scholar 

  111. Ho CY, Alghamdi TA, Botelho RJ (2011) Phosphatidylinositol-3,5-bisphosphate: no longer the poor PIP(2). Traffic 13(1):1–8

    Article  PubMed  CAS  Google Scholar 

  112. Folkerth RD et al (1995) Mucolipidosis IV: morphology and histochemistry of an autopsy case. J Neuropathol Exp Neurol 54:154–164

    Article  PubMed  CAS  Google Scholar 

  113. Silva GA (2006) Neuroscience nanotechnology: progress, opportunities and challenges. Nat Rev Neurosci 7:65–74

    Article  PubMed  CAS  Google Scholar 

  114. Silva GA (2007) Nanotechnology approaches for drug and small molecule delivery across the blood brain barrier. Surg Neurol 67:113–116

    Article  PubMed  Google Scholar 

  115. Silva GA (2010) Nanotechnology applications and approaches for neuroregeneration and drug delivery to the central nervous system. Ann N Y Acad Sci 1199:221–230

    Article  PubMed  CAS  Google Scholar 

  116. Poole B, Ohkuma S (1981) Effect of weak bases on the intralysosomal pH in mouse peritoneal macrophages. J Cell Biol 90:665–669

    Article  PubMed  CAS  Google Scholar 

  117. Reijngoud DJ, Oud PS, Tager JM (1976) Effect of ionophores on intralysosomal pH. Biochim Biophys Acta 448:303–313

    Article  PubMed  CAS  Google Scholar 

  118. Kogot-Levin A et al (2009) Mucolipidosis type IV: the effect of increased lysosomal pH on the abnormal lysosomal storage. Pediatr Res 65:686–690

    Article  PubMed  CAS  Google Scholar 

  119. Piper RC, Luzio JP (2004) CUPpling calcium to lysosomal biogenesis. Trends Cell Biol 14:471–473

    Article  PubMed  CAS  Google Scholar 

  120. Krogsgaard-Larsen P, StrÃmgaard K, Madsen U (2010) Textbook of drug design and discovery, 4th edn. CRC, Boca Raton, FL

    Google Scholar 

  121. Lee SJ, Cho KS, Koh JY (2009) Oxidative injury triggers autophagy in astrocytes: the role of endogenous zinc. Glia 57:1351–1361

    Article  PubMed  Google Scholar 

  122. Sands MS, Davidson BL (2006) Gene therapy for lysosomal storage diseases. Mol Ther 13:839–849

    Article  PubMed  CAS  Google Scholar 

  123. Sun B et al (2005) Correction of glycogen storage disease type II by an adeno-associated virus vector containing a muscle-specific promoter. Mol Ther 11:889–898

    Article  PubMed  CAS  Google Scholar 

  124. Dehay B et al (2010) Pathogenic lysosomal depletion in parkinson’s disease. J Neurosci 30:12535–12544

    Article  PubMed  CAS  Google Scholar 

  125. Nicot AS, Laporte J (2008) Endosomal ­phosphoinositides and human diseases. Traffic 9:1240–1249

    Article  PubMed  CAS  Google Scholar 

  126. Chow CY et al (2007) Mutation of FIG4 causes neurodegeneration in the pale tremor mouse and patients with CMT4J. Nature 448:68–72

    Article  PubMed  CAS  Google Scholar 

  127. Lenk GM et al (2011) Pathogenic mechanism of the FIG4 mutation responsible for Charcot-Marie-Tooth disease CMT4J. PLoS Genet 7:1002104

    Article  CAS  Google Scholar 

  128. Pasinelli P, Brown RH (2006) Molecular biology of amyotrophic lateral sclerosis: insights from genetics. Nat Rev Neurosci 7:710–723

    Article  PubMed  CAS  Google Scholar 

  129. Chow CY et al (2009) Deleterious variants of FIG4, a phosphoinositide phosphatase, in patients with ALS. Am J Hum Genet 84:85–88

    Article  PubMed  CAS  Google Scholar 

  130. Sbrissa D et al (2007) Core protein machinery for mammalian phosphatidylinositol 3,5-bisphosphate synthesis and turnover that regulates the progression of endosomal transport. Novel Sac phosphatase joins the ArPIKfyve-PIKfyve complex. J Biol Chem 282:23878–23891

    Article  PubMed  CAS  Google Scholar 

  131. Duex JE et al (2006) Phosphoinositide 5-phosphatase Fig 4p is required for both acute rise and subsequent fall in stress-induced phosphatidylinositol 3,5-bisphosphate levels. Eukaryot Cell 5:723–731

    Article  PubMed  CAS  Google Scholar 

  132. Duex JE, Tang F, Weisman LS (2006) The Vac14p-Fig4p complex acts independently of Vac7p and couples PI3,5P2 synthesis and turnover. J Cell Biol 172:693–704

    Article  PubMed  CAS  Google Scholar 

  133. Ikonomov OC et al (2010) ArPIKfyve ­regulates Sac3 protein abundance and turnover: disruption of the mechanism by Sac3I41T mutation causing Charcot-Marie-Tooth 4J disorder. J Biol Chem 285: 26760–26764

    Article  PubMed  CAS  Google Scholar 

  134. Li S et al (2005) Mutations in PIP5K3 are associated with Francois-Neetens mouchetee fleck corneal dystrophy. Am J Hum Genet 77:54–63

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The author is grateful to Dr. Shaya Lev and Maximilian Peters for careful reading of the manuscript. This review was made possible by the generous support of Rabbi David and Mrs. Anita Fuld.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David A. Zeevi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Zeevi, D.A. (2012). TRPML Channels in Function, Disease, and Prospective Therapies. In: Szallasi, A., Bíró, T. (eds) TRP Channels in Drug Discovery. Methods in Pharmacology and Toxicology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-077-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-077-9_9

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-076-2

  • Online ISBN: 978-1-62703-077-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics