Skip to main content

Overactive Bladder Models

  • Protocol
  • First Online:
  • 914 Accesses

Part of the book series: Methods in Pharmacology and Toxicology ((MIPT))

Abstract

The overactive bladder (OAB) can be defined in humans as a urodynamic observation (detrusor overactivity), or symptomatically (urgency, frequency, incontinence, nocturia) as the OAB syndrome. For obvious reasons, there are no animal models of the OAB syndrome. In humans, urinary incontinence can be due to involuntary bladder contractions demonstrable by cystometry during the filling phase. In animals, cystometric bladder hyperactivity (bladder contractions voluntary and/or involuntary) can be found in many animal models. It can occur spontaneously or be provoked, and the pathophysiology may include both peripheral and central mechanisms. To study bladder hyperactivity in animals, cystometry plays an important role. The present protocol describes the basic cystometry technique and its application in a few animal models specifically used for the study of bladder hyperactivity.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   159.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   209.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   209.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Abrams P, Cardozo L, Fall M et al (2002) The standardisation of terminology of lower urinary tract function: report from the Standardisation Sub-committee of the International Continence Society. Neurourol Urodyn 21:167–178

    Article  PubMed  Google Scholar 

  2. Hashim H, Abrams P (2006) Is the bladder a reliable witness for predicting detrusor overactivity? J Urol 175(1):191–194

    Article  PubMed  CAS  Google Scholar 

  3. Andersson KE, Soler R, Füllhase C (2011) Rodent models for urodynamic investigation. Neurourol Urodyn 30(5):636–646

    Article  PubMed  Google Scholar 

  4. Persson K, Pandita RK, Spitsbergen JM et al (1998) Spinal and peripheral mechanisms contributing to hyperactive voiding in spontaneously hypertensive rats. Am J Physiol 275: R1366–R1373

    PubMed  CAS  Google Scholar 

  5. Jin LH, Andersson KE, Kwon YH et al (2009) Selection of a control rat for conscious spontaneous hypertensive rats in studies of detrusor overactivity on the basis of measurement of intra-abdominal pressures. Neurourol Urodyn 29:1338–1343

    Article  Google Scholar 

  6. Jin LH, Andersson KE, Kwon YH, Yoon SM, Lee T (2010) Selection of a control rat for conscious spontaneous hypertensive rats in studies of detrusor overactivity on the basis of measurement of intra-abdominal pressures. Neurourol Urodyn 29(7):1338–1343

    Article  PubMed  Google Scholar 

  7. Lee T, Andersson KE, Streng T, Hedlund P (2008) Simultaneous registration of ­intraabdominal and intravesical pressures ­during cystometry in conscious rats–effects of bladder outlet obstruction and intravesical PGE2. Neurourol Urodyn 27(1):88–95

    Article  PubMed  Google Scholar 

  8. Ishizuka O, Mattiasson A, Andersson KE (1995) Prostaglandin E2-induced bladder hyperactivity in normal, conscious rats: involvement of tachykinins? J Urol 153(6):2034–2038

    Article  PubMed  CAS  Google Scholar 

  9. Schussler B (1990) Comparison of the mode of action of prostaglandin E2 (PGE2) and sulprostone, a PGE2-derivative, on the lower urinary tract in healthy women. A urodynamic study. Urol Res 18:349–352

    Article  PubMed  CAS  Google Scholar 

  10. Ishizuka O, Mattiasson A, Andersson KE (1995) Urodynamic effects of intravesical resiniferatoxin and capsaicin in conscious rats with and without outflow obstruction. J Urol 154:611–616

    Article  PubMed  CAS  Google Scholar 

  11. Streng T, Axelsson HE, Hedlund P et al (2008) Distribution and function of the hydrogen sulfide-sensitive TRPA1 ion channel in rat urinary bladder. Eur Urol 53:391–399

    Article  PubMed  CAS  Google Scholar 

  12. Mitobe M, Inoue H, Westfall TD et al (2008) A new method for producing urinary bladder hyperactivity using a non-invasive transient intravesical infusion of acetic acid in conscious rats. J Pharmacol Toxicol Methods 57:188–193

    Article  PubMed  CAS  Google Scholar 

  13. Chuang YC, Chancellor MB, Seki S et al (2003) Intravesical protamine sulfate and potassium chloride as a model for bladder hyperactivity. Urology 61:664–670

    Article  PubMed  Google Scholar 

  14. Soler R, Bruschini H, Freire MP et al (2008) Urine is necessary to provoke bladder inflammation in protamine sulfate induced urothelial injury. J Urol 180:1527–1531

    Article  PubMed  Google Scholar 

  15. Bjorling DE, Elkahwaji JE, Bushman W et al (2007) Acute acrolein-induced cystitis in mice. BJU Int 99:1523–1529

    Article  PubMed  CAS  Google Scholar 

  16. Juszczak K, Ziomber A, Wyczolkowski M et al (2009) Urodynamic effects of the bladder C-fiber afferent activity modulation in chronic model of overactive bladder in rats. J Physiol Pharmacol 60:85–91

    PubMed  CAS  Google Scholar 

  17. Stein PC, Pham H, Ito T et al (1996) Bladder injury model induced in rats by exposure to protamine sulfate followed by bacterial endotoxin. J Urol 155:1133–1138

    Article  PubMed  CAS  Google Scholar 

  18. Vale JA, Bowsher WG, Liu K et al (1993) Post-irradiation bladder dysfunction: development of a rat model. Urol Res 21:383–388

    Article  PubMed  CAS  Google Scholar 

  19. Souza-Fiho MV, Lima MV, Pompeu MM, Ballejo G, Cunha FQ, Ribeiro Rde A (1997) Involvement of nitric oxide in the pathogenesis of cyclophosphamide-induced hemorrhagic cystitis. Am J Pathol 150(1):247–256

    PubMed  CAS  Google Scholar 

  20. Lantéri-Minet M, Bon K, de Pommery J, Michiels JF, Menétrey D (1995) Cyclophosphamide cystitis as a model of visceral pain in rats: model elaboration and spinal structures involved as revealed by the expression of c-Fos and Krox-24 proteins. Exp Brain Res 105(2):220–232

    Article  PubMed  Google Scholar 

  21. Birder LA, de Groat WC (1992) Increased c-fos expression in spinal neurons after irritation of the lower urinary tract in the rat. J Neurosci 12(12):4878–4889

    PubMed  CAS  Google Scholar 

  22. Yu Y, Fraser MO, de Groat WC (2004) Effects of ZD6169, a K ATP channel opener, on neurally- mediated plasma extravasation in the rat urinary bladder induced by chemical or electrical stimulation of nerves. Brain Res 996(1):41–46

    Article  PubMed  CAS  Google Scholar 

  23. Chuang YC, Chancellor MB, Seki S, Yoshimura N, Tyagi P, Huang L, Lavelle JP, De Groat WC, Fraser MO (2003) Intravesical protamine sulfate and potassium chloride as a model for bladder hyperactivity. Urology 61(3): 664–670

    Article  PubMed  Google Scholar 

  24. LaBerge J, Malley SE, Zvarova K et al (2006) Expression of corticotropin-releasing factor and CRF receptors in micturition pathways after cyclophosphamide-induced cystitis. Am J Physiol Regul Integr Comp Physiol 291:R692–R703

    Article  PubMed  CAS  Google Scholar 

  25. Takeda H, Yamazaki Y, Igawa Y, Kaidoh K, Akahane S, Miyata H, Nishizawa O, Akahane M, Andersson KE (2002) Effects of beta(3)-adrenoceptor stimulation on prostaglandin E(2)- induced bladder hyperactivity and on the cardiovascular system in conscious rats. Neurourol Urodyn 21(6):558–565

    Article  PubMed  CAS  Google Scholar 

  26. Ishizuka O, Igawa Y, Mattiasson A, Andersson KE (1994) Capsaicin-induced bladder hyperactivity in normal conscious rats. J Urol 152(2 Pt 1):525–530

    PubMed  CAS  Google Scholar 

  27. Rahman NU, Phonsombat S, Bochinski D, Carrion RE, Nunes L, Lue TF (2007) An animal model to study lower urinary tract symptoms and erectile dysfunction: the hyperlipidaemic rat. BJU Int 100(3):658–663

    Article  PubMed  Google Scholar 

  28. Son H, Lee SL, Park WH, Park K, Park S, Kang MS, Kim DY, Kim SW, Paick JS (2007) New unstable bladder model in hypercholesterolemia rats. Urology 69(1):186–190

    Article  PubMed  Google Scholar 

  29. Azadzoi KM, Tarcan T, Kozlowski R, Krane RJ, Siroky MB (1999) Overactivity and structural changes in the chronically ischemic bladder. J Urol 162(5):1768–1778

    Article  PubMed  CAS  Google Scholar 

  30. Azadzoi KM, Yalla SV, Siroky MB (2007) Oxidative stress and neurodegeneration in the ischemic overactive bladder. J Urol 178(2): 710–715

    Article  PubMed  CAS  Google Scholar 

  31. Park K, Son H, Kim SW, Paick JS (2005) Initial validation of a novel rat model of vasculogenic erectile dysfunction with generalized atherosclerosis. Int J Impot Res 17(5):424–430

    Article  PubMed  CAS  Google Scholar 

  32. Daneshgari F, Leiter EH, Liu G, Reeder J (2009) Animal models of diabetic uropathy. J Urol 182(6 Suppl):S8–S13

    Article  PubMed  Google Scholar 

  33. Janssen U, Phillips AO, Floege J (1999) Rodent models of nephropathy associated with type II diabetes. J Nephrol 12(3):159–172

    PubMed  CAS  Google Scholar 

  34. Gasbarro G, Lin DL, Vurbic D, Quisno A, Kinley B, Daneshgari F, Damaser MS (2010) Voiding function in obese and type 2 diabetic female rats. Am J Physiol Renal Physiol 298(1):F72–F77

    Article  PubMed  CAS  Google Scholar 

  35. Oelke M, Baard J, Wijkstra H et al (2008) Age and bladder outlet obstruction are independently associated with detrusor overactivity in patients with benign prostatic hyperplasia. Eur Urol 54:419–426

    Article  PubMed  Google Scholar 

  36. Malmgren A, Sjögren C, Uvelius B, Mattiasson A, Andersson KE, Andersson PO (1987) Cystometrical evaluation of bladder instability in rats with infravesical outflow obstruction. J Urol 137(6):1291–1294

    PubMed  CAS  Google Scholar 

  37. Mostwin JL, Karim OM, Van Koeveringe G, Seki N (1994) Guinea pig as an animal model for the study of urinary bladder function in the normal and obstructed state. Neurourol Urodyn 13(2):137–145

    Article  PubMed  CAS  Google Scholar 

  38. Pandita RK, Fujiwara M, Alm P, Andersson KE (2000) Cystometric evaluation of bladder function in non-anesthetized mice with and without bladder outlet obstruction. J Urol 164(4):1385–1389

    Article  PubMed  CAS  Google Scholar 

  39. Saito M, Miyagawa I (2001) Bladder dysfunction after acute urinary retention in rats. J Urol 165:1745–1747

    Article  PubMed  CAS  Google Scholar 

  40. Melman A, Tar M, Boczko J et al (2005) Evaluation of two techniques of partial urethral obstruction in the male rat model of bladder outlet obstruction. Urology 66:1127–1133

    Article  PubMed  Google Scholar 

  41. Schroder A, Uvelius B, Newgreen D et al (2003) Bladder overactivity in mice after 1 week of outlet obstruction. Mainly afferent dysfunction? J Urol 170:1017–1021

    Article  PubMed  Google Scholar 

  42. de Groat WC, Yoshimura N (2010) Changes in afferent activity after spinal cord injury. Neurourol Urodyn 29:63–76

    Article  PubMed  Google Scholar 

  43. Noto H, Roppolo JR, Steers WD et al (1991) Electrophysiological analysis of the ascending and descending components of the micturition reflex pathway in the rat. Brain Res 549: 95–105

    Article  PubMed  CAS  Google Scholar 

  44. Pikov V, Gillis RA, Jasmin L et al (1998) Assessment of lower urinary tract functional deficit in rats with contusive spinal cord injury. J Neurotrauma 15:375–386

    Article  PubMed  CAS  Google Scholar 

  45. Pikov V, Wrathall JR (2002) Altered glutamate receptor function during recovery of bladder detrusor-external urethral sphincter coordination in a rat model of spinal cord injury. J Pharmacol Exp Ther 300:421–427

    Article  PubMed  CAS  Google Scholar 

  46. Pikov V, Wrathall JR (2001) Coordination of the bladder detrusor and the external urethral sphincter in a rat model of spinal cord injury: effect of injury severity. J Neurosci 21:559–569

    PubMed  CAS  Google Scholar 

  47. Araki I, Kitahara M, Oida T et al (2000) Voiding dysfunction and Parkinson’s disease: urodynamic abnormalities and urinary symptoms. J Urol 164:1640–1643

    Article  PubMed  CAS  Google Scholar 

  48. Fowler CJ (2007) Update on the neurology of Parkinson’s disease. Neurourol Urodyn 26:103–109

    Article  PubMed  Google Scholar 

  49. Sammour ZM, Gomes CM, Barbosa ER et al (2009) Voiding dysfunction in patients with Parkinson’s disease: impact of neurological impairment and clinical parameters. Neurourol Urodyn 28:510–515

    Article  PubMed  Google Scholar 

  50. Seki S, Igawa Y, Kaidoh K et al (2001) Role of dopamine D1 and D2 receptors in the micturition reflex in conscious rats. Neurourol Urodyn 20:105–113

    Article  PubMed  CAS  Google Scholar 

  51. Yoshimura N, Kuno S, Chancellor MB, De Groat WC, Seki S (2003) Dopaminergic mechanisms underlying bladder hyperactivity in rats with a unilateral 6-hydroxydopamine (6-OHDA) lesion of the nigrostriatal pathway. Br J Pharmacol 139(8):1425–1432

    Article  PubMed  CAS  Google Scholar 

  52. Yokoyama O, Mizuno H, Komatsu K et al (2004) Role of glutamate receptors in the development and maintenance of bladder overactivity after cerebral infarction in the rat. J Urol 171:1709–1714

    Article  PubMed  CAS  Google Scholar 

  53. Soler R, Füllhase C, Santos C, Andersson KE (2011) Development of bladder dysfunction in a rat model of dopaminergic brain lesion. Neurourol Urodyn 30(1):188–193

    Article  PubMed  CAS  Google Scholar 

  54. Paxinos G, Watson C (2005) The rat brain in stereotaxic coordinates – the new coronal set, 5th edn. Academic, New York

    Google Scholar 

  55. Yotsuyanagi S, Yokoyama O, Komatsu K et al (2005) Role of cyclooxygenase-2 in the development of bladder overactivity after cerebral infarction in the rat. J Urol 174:365–369

    Article  PubMed  CAS  Google Scholar 

  56. Kodama K, Yokoyama O, Komatsu K et al (2002) Contribution of cerebral nitric oxide to bladder overactivity after cerebral infarction in rats. J Urol 167:391–396

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karl-Erik Andersson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Soler, R., Campeau, L., Füllhase, C., Andersson, KE. (2012). Overactive Bladder Models. In: Szallasi, A., Bíró, T. (eds) TRP Channels in Drug Discovery. Methods in Pharmacology and Toxicology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-077-9_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-077-9_21

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-076-2

  • Online ISBN: 978-1-62703-077-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics