Skip to main content

TRP-Mediated Cytoskeletal Reorganization: Implications for Disease and Drug Development

  • Protocol
  • First Online:
TRP Channels in Drug Discovery

Part of the book series: Methods in Pharmacology and Toxicology ((MIPT))

Abstract

So far the major focus of Transient Receptor Potential (TRP) channels in the context of pathophysiological disorders was centered exclusively on the ionic conductivity mediated by these channels. However, recently the importance of non-ionic functions of TRP channels in different pathophysiological disorders has emerged. Recently several physical and functional interactions of TRP channels with cytoskeletal components have been characterized. These interactions play important roles in executing the non-ionic functions and regulations of TRP channels per se. In the membranous environment, TRP channels form dynamic signaling complexes that include components like microtubule and actin cytoskeleton, other scaffolding and key regulatory components. TRP channels can also regulate the integrity and dynamics of different cytoskeletal systems in complex manner. In many cases, these regulations seem to be independent of Ca2+ influx mediated by these channels and thus have immense significance in the context of pathophysiological disorders. In this review, I highlight the importance of TRP channel interactions and multi-directional regulations with cytoskeletal components in detail. This aspect opens up new avenues to target TRP signaling complexes by pharmacological manners. The strategies to target TRP complexes rather than targeting TRP channel solely might be useful for several clinical purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 159.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 209.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 209.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

4aPDD:

4a-phorbol-didecanoate

CIRB domain:

Calmodulin- and IP3R-binding region

CMT2:

Charcot–Marie-Tooth disease type 2

DRG neurons:

Dorsal root ganglion neurons

eGFP:

Enhanced green fluorescence protein

EGTA:

Ethylene glycol tetraacetic acid

FRET:

Fluorescence Resonance Energy Transfer

5’I-RTX:

5’-iodoresiniferatoxin

HUVEC:

Human umbilical vein endothelial cell

TRP Channels:

Transient receptor potential channels

PC2:

Polycystin-2

TRPN:

NomPC-like TRP channel

TRPC:

Transient receptor potential canonical

TRPML:

Transient receptor potential mucolipin

MAPs:

Microtubule-associated proteins

MBP:

Maltose-binding protein

NF200:

Neurofilament heavy chain 200 KDa

OAG:

1-oleoyl-2-acetyl-sn-glycerol

PKC:

Protein kinase C

PKD:

Polycystic kidney disease

PKCe:

Protein kinase Ce sub type

RTX:

Resiniferatoxin

References

  1. Sheetz MP (2001) Cell control by membrane-cytoskeleton adhesion. Nat Rev Mol Cell Biol 2:392–396

    Article  PubMed  CAS  Google Scholar 

  2. Sheetz MP, Sable JE, Döbereiner HG (2006) Continuous membrane-cytoskeleton adhesion requires continuous accommodation to lipid and cytoskeleton dynamics. Annu Rev Biophys Biomol Struct 35:417–434

    Article  PubMed  CAS  Google Scholar 

  3. Goswami C, Hucho T (2008) Novel aspects of the submembraneous microtubule cytoskeleton. FEBS J 275:4653

    Article  PubMed  CAS  Google Scholar 

  4. Arce CA, Casale CH, Barra HS (2008) Submembraneous microtubule cytoskeleton: regulation of ATPases by interaction with acetylated tubulin. FEBS J 275:4664–4674

    Article  PubMed  CAS  Google Scholar 

  5. Roychowdhury S, Rasenick MM (2008) Submembraneous microtubule cytoskeleton: regulation of microtubule assembly by heterotrimeric Gproteins. FEBS J 275:4654–4663

    Article  PubMed  CAS  Google Scholar 

  6. Goswami C, Hucho T (2008) Submembraneous microtubule cytoskeleton: biochemical and functional interplay of TRP channels with the cytoskeleton. FEBS J 275:4684–4699

    Article  PubMed  CAS  Google Scholar 

  7. Chen XZ, Li Q, Wu Y, Liang G, Lara CJ, Cantiello HF (2008) Submembraneous microtubule cytoskeleton: interaction of TRPP2 with the cell cytoskeleton. FEBS J 275:4675–4683

    Article  PubMed  CAS  Google Scholar 

  8. Feit H, Barondes SH (1970) Colchicine-binding activity in particulate fractions of mouse brain. J Neurochem 17:1355–1364

    Article  PubMed  CAS  Google Scholar 

  9. Walters BB, Matus AI (1975) Tubulin in postynaptic junctional lattice. Nature 257:496–498

    Article  PubMed  CAS  Google Scholar 

  10. Zenner HP, Pfeuffer T (1976) Microtubular proteins in pigeon erythrocyte membranes. Eur J Biochem 71:177–184

    Article  PubMed  CAS  Google Scholar 

  11. Yoshimura Y, Yamauchi Y, Shinkawa T, Taoka M, Donai H, Takahashi N, Isobe T, Yamauchi T (2004) Molecular constituents of the postsynaptic density fraction revealed by proteomic analysis using multidimensional liquid chromatography-tandem mass spectrometry. J Neurochem 88:759–768

    Article  PubMed  CAS  Google Scholar 

  12. Li N, Shaw AR, Zhang N, Mak A, Li L (2004) Lipid raft proteomics: analysis of in- solution digest of sodium dodecyl sulfate-solubilized lipid raft proteins by liquid chromatography-matrix-assisted laser desorption/ionization tandem mass spectrometry. Proteomics 4:3156–3166

    Article  PubMed  CAS  Google Scholar 

  13. Feuk-Lagerstedt E, Movitz C, Pellmé S, Dahlgren C, Karlsson A (2007) Lipid raft proteome of the human neutrophil azurophil granule. Proteomics 7:194–205

    Article  PubMed  CAS  Google Scholar 

  14. Foster LJ, De Hoog CL, Mann M (2003) Unbiased quantitative proteomics of lipid rafts reveals high specificity for signaling factors. Proc Natl Acad Sci USA 100:5813–5818

    Article  PubMed  CAS  Google Scholar 

  15. Wolff J (2009) Plasma membrane tubulin. Biochim Biophys Acta 1788:1415–1433

    Article  PubMed  CAS  Google Scholar 

  16. Stephens RE (1986) Membrane tubulin. Biol Cell 57:95–109

    Article  PubMed  CAS  Google Scholar 

  17. Ramsey IS, Delling M, Clapham DE (2006) An introduction to TRP channels. Annu Rev Physiol 68:619–647

    Article  PubMed  CAS  Google Scholar 

  18. Clapham DE (2003) TRP channels as cellular sensors. Nature 426:517–524

    Article  PubMed  CAS  Google Scholar 

  19. Clapham DE, Runnels LW, Strübing C (2001) The TRP ion channel family. Nat Rev Neurosci 2:387–396

    Article  PubMed  CAS  Google Scholar 

  20. Venkatachalam K, Montell C (2007) TRP channels. Annu Rev Biochem 76:387–417

    Article  PubMed  CAS  Google Scholar 

  21. Verma P, Kumar A, Goswami C (2010) TRPV4-mediated channelopathies. Channels (Austin) 4(4):319–328

    Article  CAS  Google Scholar 

  22. Winter J (1987) Characterization of capsaicin-sensitive neurones in adult rat dorsal root ganglion cultures. Neurosci Lett 80:134–140

    Article  PubMed  CAS  Google Scholar 

  23. Wood JN, Winter J, James IF, Rang HP, Yeats J, Bevan S (1988) Capsaicin-induced ion fluxes in dorsal root ganglion cells in culture. J Neurosci 8:3208–3220

    PubMed  CAS  Google Scholar 

  24. Majhi R, Sardar P, Goswami L, Goswami C (2011) Right time – right location – right move: TRPs find motors for common functions. Channels (Austin) 5(4):375–381

    Article  CAS  Google Scholar 

  25. Jurczyk A, Gromley A, Redick S, San Agustin J, Witman G, Pazour GJ, Peters DJ, Doxsey S (2004) Pericentrin forms a complex with intraflagellar transport proteins and polycystin-2 and is required for primary cilia assembly. J Cell Biol 166:637–643

    Article  PubMed  CAS  Google Scholar 

  26. Nauli SM, Alenghat FJ, Luo Y, Williams E, Vassilev P, Li X, Elia AE, Lu W, Brown EM, Quinn SJ, Ingber DE, Zhou J (2003) Polycystins 1 and 2 mediate mechanosensation in the primary cilium of kidney cells. Nat Genet 33:129–137

    Article  PubMed  CAS  Google Scholar 

  27. Li Q, Montalbetti N, Wu Y, Ramos A, Raychowdhury MK, Chen XZ, Cantiello HF (2006) Polycystin-2 cation channel function is under the control of microtubular structures in primary cilia of renal epithelial cells. J Biol Chem 281:37566–37575

    Article  PubMed  CAS  Google Scholar 

  28. Shin JB, Adams D, Paukert M, Siba M, Sidi S, Levin M, Gillespie PG, Gründer S (2005) Xenopus TRPN1 (NOMPC) localizes to microtubule-based cilia in epithelial cells, including inner-ear hair cells. Proc Natl Acad Sci USA 102:12572–12577

    Article  PubMed  CAS  Google Scholar 

  29. Liang X, Madrid J, Saleh HS, Howard J (2011) NOMPC, a member of the TRP channel family, localizes to the tubular body and distal cilium of Drosophila campaniform and chordotonal receptor cells. Cytoskeleton (Hoboken) 68:1–7

    CAS  Google Scholar 

  30. Lee J, Moon S, Cha Y, Chung YD (2010) Drosophila TRPN(=NOMPC) channel localizes to the distal end of mechanosensory cilia. PLoS One 5:e11012

    Article  PubMed  CAS  Google Scholar 

  31. Dryer SE, Reiser J (2010) TRPC6 channels and their binding partners in podocytes: role in glomerular filtration and pathophysiology. Am J Physiol Renal Physiol 299:F689–F701

    Article  PubMed  CAS  Google Scholar 

  32. Goswami C, Hucho T (2007) TRPV1 expression-dependent initiation and regulation of filopodia. J Neurochem 103:1319–1333

    Article  PubMed  CAS  Google Scholar 

  33. Goswami C, Kuhn J, Heppenstall PA, Hucho T (2010) Importance of non-selective cation channel TRPV4 interaction with cytoskeleton and their reciprocal regulations in cultured cells. PLoS One 5(7):e11654

    Article  PubMed  CAS  Google Scholar 

  34. Shibasaki K, Murayama N, Ono K, Ishizaki Y, Tominaga M (2010) TRPV2 enhances axon outgrowth through its activation by membrane stretch in developing sensory and motor neurons. J Neurosci 30:4601–4612

    Article  PubMed  CAS  Google Scholar 

  35. Yamamoto S, Wajima T, Hara Y, Nishida M, Mori Y (2007) Transient receptor potential channels in Alzheimer’s disease. Biochim Biophys Acta 1772:958–967

    Article  PubMed  CAS  Google Scholar 

  36. Loudon RP, Silver LD, Yee HF Jr, Gallo G (2006) RhoA-kinase and myosin II are required for the maintenance of growth cone polarity and guidance by nerve growth factor. J Neurobiol 66:847–867

    Article  PubMed  CAS  Google Scholar 

  37. Medeiros NA, Burnette DT, Forscher P (2006) Myosin II functions in actin-bundle turnover in neuronal growth cones. Nat Cell Biol 8:215–226

    Article  PubMed  CAS  Google Scholar 

  38. Les Erickson F, Corsa AC, Dose AC, Burnside B (2003) Localization of a class III myosin to filopodia tips in transfected HeLa cells requires an actin-binding site in its tail domain. Mol Biol Cell 14:4173–4180

    Article  PubMed  CAS  Google Scholar 

  39. Bridgman PC, Dave S, Asnes CF, Tullio AN, Adelstein RS (2001) Myosin IIB is required for growth cone motility. J Neurosci 21:6159–6169

    PubMed  CAS  Google Scholar 

  40. Bridgman PC, Elkin LL (2000) Axonal myosins. J Neurocytol 29:831–841

    Article  PubMed  CAS  Google Scholar 

  41. Berg JS, Derfler BH, Pennisi CM, Corey DP, Cheney RE (2000) Myosin-X, a novel myosin with pleckstrin homology domains, associates with regions of dynamic actin. J Cell Sci 113:3439–3451

    PubMed  CAS  Google Scholar 

  42. Berg JS, Cheney RE (2002) Myosin-X is an unconventional myosin that undergoes intrafilopodial motility. Nat Cell Biol 4:246–250

    Article  PubMed  CAS  Google Scholar 

  43. Sousa AD, Berg JS, Robertson BW, Meeker RB, Cheney RE (2006) Myo10 in brain: developmental regulation, identification of a headless isoform and dynamics in neurons. J Cell Sci 119:184–194

    Article  PubMed  CAS  Google Scholar 

  44. Sousa AD, Cheney RE (2005) Myosin-X: a molecular motor at the cell’s fingertips. Trends Cell Biol 15:533–539

    Article  PubMed  CAS  Google Scholar 

  45. Bohil AB, Robertson BW, Cheney RE (2006) Myosin-X is a molecular motor that functions in filopodia formation. Proc Natl Acad Sci USA 103:12411–12416

    Article  PubMed  CAS  Google Scholar 

  46. Bennett RD, Mauer AS, Strehler EE (2007) Calmodulin-like protein increases filopodia-dependent cell motility via up-regulation of myosin-10. J Biol Chem 282:3205–3212

    Article  PubMed  CAS  Google Scholar 

  47. Belyantseva IA, Boger ET, Friedman TB (2003) Myosin XVa localizes to the tips of inner ear sensory cell stereocilia and is essential for staircase formation of the hair bundle. Proc Natl Acad Sci USA 100:13958–13963

    Article  PubMed  CAS  Google Scholar 

  48. Goswami C, Dreger M, Otto H, Schwappach B, Hucho F (2006) Rapid disassembly of dynamic microtubules upon activation of the capsaicin receptor TRPV1. J Neurochem 96:254–266

    Article  PubMed  CAS  Google Scholar 

  49. Goswami C, Hucho TB, Hucho F (2007) Identification and characterisation of novel tubulin-binding motifs located within the C-terminus of TRPV1. J Neurochem 101:250–262

    Article  PubMed  CAS  Google Scholar 

  50. Kuwahara K, Wang Y, McAnally J, Richardson JA, Bassel-Duby R, Hill JA, Olson EN (2006) TRPC6 fulfills a calcineurin signaling circuit during pathologic cardiac remodeling. J Clin Invest 116:3114–31126

    Article  PubMed  CAS  Google Scholar 

  51. Avraham KB (1997) Motors, channels and the sounds of silence. Nat Med 3:608–609

    Article  PubMed  CAS  Google Scholar 

  52. Xu C, Rossetti S, Jiang L, Harris PC, Brown-Glaberman U, Wandinger-Ness A, Bacallao R, Alper SL (2007) Human ADPKD primary cyst epithelial cells with a novel, single codon deletion in the PKD1 gene exhibit defective ciliary polycystin localization and loss of flow-induced Ca2+ signaling. Am J Physiol Renal Physiol 292:F930–F945

    Article  PubMed  CAS  Google Scholar 

  53. Montalbetti N, Li Q, Wu Y, Chen XZ, Cantiello HF (2007) Polycystin-2 cation channel function in the human syncytiotrophoblast is regulated by microtubular structures. J Physiol 579:717–728

    Article  PubMed  CAS  Google Scholar 

  54. Auer-Grumbach M et al (2010) Alterations in the ankyrin domain of TRPV4 cause congenital distal SMA, scapuloperoneal SMA and HMSN2C. Nat Genet 42:160–164

    Article  PubMed  CAS  Google Scholar 

  55. Landouré G et al (2010) Mutations in TRPV4 cause Charcot-Marie-Tooth disease type 2C. Nat Genet 42:170–174

    Article  PubMed  CAS  Google Scholar 

  56. Deng HX et al (2010) Scapuloperoneal spinal muscular atrophy and CMT2C are allelic disorders caused by alterations in TRPV4. Nat Genet 42:165–169

    Article  PubMed  CAS  Google Scholar 

  57. Zhao C et al (2001) Charcot-Marie-Tooth disease type 2A caused by mutation in a microtubule motor KIF1Bbeta. Cell 105:587–597

    Article  PubMed  CAS  Google Scholar 

  58. Redowicz MJ (2002) Myosins and pathology: genetics and biology. Acta Biochim Pol 49:789–804

    PubMed  CAS  Google Scholar 

  59. Libby RT, Steel KP (2000) The roles of unconventional myosins in hearing and deafness. Essays Biochem 35:159–174

    PubMed  CAS  Google Scholar 

  60. Hasson T, Heintzelman MB, Santos-Sacchi J, Corey DP, Mooseker MS (1995) Expression in cochlea and retina of myosin VIIa, the gene product defective in Usher syndrome type 1B. Proc Natl Acad Sci USA 92:9815–9819

    Article  PubMed  CAS  Google Scholar 

  61. Grimm C, Cuajungco MP, van Aken AF, Schnee M, Jörs S, Kros CJ, Ricci AJ, Heller S (2007) A helix-breaking mutation in TRPML3 leads to constitutive activity underlying deafness in the varitintwaddler mouse. Proc Natl Acad Sci USA 104:19583–19588

    Article  PubMed  CAS  Google Scholar 

  62. Tabuchi K, Suzuki M, Mizuno A, Hara A (2005) Hearing impairment in TRPV4 knockout mice. Neurosci Lett 382:304–308

    Article  PubMed  CAS  Google Scholar 

  63. Sidi S, Friedrich RW, Nicolson T (2003) NompC TRP channel required for vertebrate sensory hair cell mechanotransduction. Science 301:96–99

    Article  PubMed  CAS  Google Scholar 

  64. Di Palma F, Belyantseva IA, Kim HJ, Vogt TF, Kachar B, Noben-Trauth K (2002) Mutations in Mcoln3 associated with deafness and pigmentation defects in varitint-waddler (Va) mice. Proc Natl Acad Sci USA 99:14994–14999

    Article  PubMed  CAS  Google Scholar 

  65. Nilius B, Voets T, Peters J (2005) TRP channels in disease. Sci STKE 295:re8

    Article  Google Scholar 

  66. Puertollano R, Kiselyov K (2009) TRPMLs: in sickness and in health. Am J Physiol Renal Physiol 296:F1245–F1254

    Article  PubMed  CAS  Google Scholar 

  67. van Aken AF et al (2008) TRPML3 mutations cause impaired mechano-electrical transduction and depolarization by an inward-rectifier cation current in auditory hair cells of varitint-waddler mice. J Physiol 586:5403–5418

    Article  PubMed  CAS  Google Scholar 

  68. Nagata K, Zheng L, Madathany T, Castiglioni AJ, Bartles JR, García-Añoveros J (2008) The varitint-waddler (Va) deafness mutation in TRPML3 generates constitutive, inward rectifying currents and causes cell degeneration. Proc Natl Acad Sci USA 105:353–358

    Article  PubMed  CAS  Google Scholar 

  69. Minke B (1977) Drosophila mutant with a transducer defect. Biophys Struct Mech 3:59–64

    Article  PubMed  CAS  Google Scholar 

  70. Ribelayga C (2010) Vertebrate vision: TRP channels in the spotlight. Curr Biol 20:R278–R280

    Article  PubMed  CAS  Google Scholar 

  71. Koike C, Numata T, Ueda H, Mori Y, Furukawa T (2010) TRPM1: a vertebrate TRP channel responsible for retinal ON bipolar function. Cell Calcium 48:95–101

    Article  PubMed  CAS  Google Scholar 

  72. van Genderen MM et al (2009) Mutations in TRPM1 are a common cause of complete congenital stationary night blindness. Am J Hum Genet 85:730–736

    Article  PubMed  CAS  Google Scholar 

  73. Satoh AK, Li BX, Xia H, Ready DF (2008) Calcium-activated myosin V closes the Drosophila pupil. Curr Biol 18:951–955

    Article  PubMed  CAS  Google Scholar 

  74. Meyer NE, Joel-Almagor T, Frechter S, Minke B, Huber A (2006) Subcellular translocation of the eGFPtagged TRPL channel in Drosophila photoreceptors requires activation of the phototransduction cascade. J Cell Sci 119:2592–2603

    Article  PubMed  CAS  Google Scholar 

  75. Goel M, Sinkins W, Keightley A, Kinter M, Schilling WP (2005) Proteomic analysis of TRPC5- and TRPC6-binding partners reveals interaction with the plasmalemmal Na(+)/K(+)-ATPase. Pflugers Arch 451:87–98

    Article  PubMed  CAS  Google Scholar 

  76. Clark K et al (2006) TRPM7, a novel regulator of actomyosin contractility and cell adhesion. EMBO J 25:290–301

    Article  PubMed  CAS  Google Scholar 

  77. Lockwich T et al (2008) Analysis of TRPC3-interacting proteins by tandem mass spectrometry. J Proteome Res 7:979–989

    Article  PubMed  CAS  Google Scholar 

  78. Stein AT, Ufret-Vincenty CA, Hua L, Santana LF, Gordon SE (2006) Phosphoinositide 3-kinase binds to TRPV1 and mediates NGF-stimulated TRPV1 trafficking to the plasma membrane. J Gen Physiol 128:509–522

    Article  PubMed  CAS  Google Scholar 

  79. Bollimuntha S, Cornatzer E, Singh BB (2005) Plasma membrane localization and function of TRPC1 is dependent on its interaction with b-tubulin in retinal epithelium cells. Vis Neurosci 22:163–170

    Article  PubMed  Google Scholar 

  80. Goswami C, Dreger M, Jahnel R, Bogen O, Gillen C, Hucho F (2004) Identification and characterization of a Ca2+ -sensitive interaction of the vanilloid receptor TRPV1 with tubulin. J Neurochem 91:1092–1103

    Article  PubMed  CAS  Google Scholar 

  81. Laínez S et al (2010) GABAA receptor associated protein (GABARAP) modulates TRPV1 expression and channel function and desensitization. FASEB J 24:1958–1970

    Article  PubMed  CAS  Google Scholar 

  82. Erickson HP, Voter WA (1976) Polycation-induced assembly of purified tubulin. Proc Natl Acad Sci USA 73:2813–2817

    Article  PubMed  CAS  Google Scholar 

  83. Lefèvre J et al (2011) The C terminus of tubulin, a versatile partner for cationic molecules: binding of Tau, polyamines, and calcium. J Biol Chem 286:3065–3078

    Article  PubMed  CAS  Google Scholar 

  84. Savarin P et al (2010) A central role for polyamines in microtubule assembly in cells. Biochem J 430:151–159

    Article  PubMed  CAS  Google Scholar 

  85. Hayashi M, Matsumura F (1975) Calcium binding to bovine tubulin. FEBS Lett 58:222–225

    Article  PubMed  CAS  Google Scholar 

  86. Solomon F (1977) Binding sites for calcium on tubulin. Biochemistry 16:358–363

    Article  PubMed  CAS  Google Scholar 

  87. Serrano L, Valencia A, Caballero R, Avila J (1986) Localization of the high affinity calcium-binding site on tubulin molecule. J Biol Chem 261:7076–7081

    PubMed  CAS  Google Scholar 

  88. Fong KC, Babitch JA, Anthony FA (1988) Calcium binding to tubulin. Biochim Biophys Acta 952:13–19

    Article  PubMed  CAS  Google Scholar 

  89. Soto C, Rodriguez PH, Monasterio O (1996) Calcium and gadolinium ions stimulate the GTPase activity of purified chicken brain tubulin through a conformational change. Biochemistry 35:6337–6344

    Article  PubMed  CAS  Google Scholar 

  90. Suzuki M, Hirao A, Mizuno A (2003) Microtubule-associated [corrected] protein 7 increases the membrane expression of transient receptor potential vanilloid 4 (TRPV4). J Biol Chem 278:51448–51453

    Article  PubMed  CAS  Google Scholar 

  91. Goswami C, Kuhn J, Dina OA, Fernández-Ballester G, Levine JD, Ferrer-Montiel A, Hucho T (2011) Estrogen destabilizes microtubules through an ion-conductivity-independent TRPV1 pathway. J Neurochem 117:995–1008

    Article  PubMed  CAS  Google Scholar 

  92. Greka A, Navarro B, Oancea E, Duggan A, Clapham DE (2003) TRPC5 is a regulator of hippocampal neurite length and growth cone morphology. Nat Neurosci 6:837–845

    Article  PubMed  CAS  Google Scholar 

  93. Montalbetti N, Li Q, González-Perrett S, Semprine J, Chen XZ, Cantiello HF (2005) Effect of hydro-osmotic pressure on polycystin-2 channel function in the human syncytiotrophoblast. Pflugers Arch 451:294–303

    Article  PubMed  CAS  Google Scholar 

  94. Blumberg PM, Pearce LV, Lee J (2011) TRPV1 activation is not an all-or-none event: TRPV1 partial agonism/antagonism and its regulatory modulation. Curr Top Med Chem 11:2151–2158

    Article  PubMed  CAS  Google Scholar 

  95. Han P et al (2007) Capsaicin causes protein synthesis inhibition and microtubule disassembly through TRPV1 activities both on the plasma membrane and intracellular membranes. Biochem Pharmacol 73:1635–1645

    Article  PubMed  CAS  Google Scholar 

  96. Job D, Fischer EH, Margolis RL (1981) Rapid disassembly of cold-stable microtubules by calmodulin. Proc Natl Acad Sci USA 78:4679–4682

    Article  PubMed  CAS  Google Scholar 

  97. Karr TL, Kristofferson D, Purich DL (1980) Calcium ion induces endwise depolymerization of bovine brain microtubules. J Biol Chem 255:11853–11856

    PubMed  CAS  Google Scholar 

  98. Lieuvin A, Labbe JC, Doree M, Job D (1994) Intrinsic microtubule stability in interphase cells. J Cell Biol 124:985–996

    Article  PubMed  CAS  Google Scholar 

  99. Alenghat FJ, Nauli SM, Kolb R, Zhou J, Ingber DE (2004) Global cytoskeletal control of mechanotransduction in kidney epithelial cells. Exp Cell Res 301:23–30

    Article  PubMed  CAS  Google Scholar 

  100. Kaazempur Mofrad MR, Abdul-Rahim NA, Karcher H, Mack PJ, Yap B et al (2005) Exploring the molecular basis for mechanosensation, signal transduction, and cytoskeletal remodeling. Acta Biomater 1:281–293

    Article  PubMed  CAS  Google Scholar 

  101. Ramadass R, Becker D, Jendrach M, Bereiter-Hahn J (2007) Spectrally and spatially resolved fluorescence lifetime imaging in living cells: TRPV4-microfilament interactions. Arch Biochem Biophys 463:27–36

    Article  PubMed  CAS  Google Scholar 

  102. Dina OA, McCarter GC, de Coupade C, Levine JD (2003) Role of the sensory neuron cytoskeleton in second messenger signaling for inflammatory pain. Neuron 39:613–624

    Article  PubMed  CAS  Google Scholar 

  103. Alessandri-Haber N, Dina OA, Joseph EK, Reichling DB, Levine JD (2008) Interaction of transient receptor potential vanilloid 4, integrin, and SRC tyrosine kinase in mechanical hyperalgesia. J Neurosci 28:1046–1057

    Article  PubMed  CAS  Google Scholar 

  104. Lorenzo IM, Liedtke W, Sanderson MJ, Valverde MA (2008) TRPV4 channel participates in receptor-operated calcium entry and ciliary beat frequency regulation in mouse airway epithelial cells. Proc Natl Acad Sci USA 105:12611–12616

    Article  PubMed  CAS  Google Scholar 

  105. Gradilone SA, Masyuk AI, Splinter PL, Banales JM, Huang BQ et al (2007) Cholangiocyte cilia express TRPV4 and detect changes in luminal tonicity inducing bicarbonate secretion. Proc Natl Acad Sci USA 104:19138–19143

    Article  PubMed  CAS  Google Scholar 

  106. Teilmann SC, Byskov AG, Pedersen PA, Wheatley DN, Pazour GJ et al (2005) Localization of transient receptor potential ion channels in primary and motile cilia of the female murine reproductive organs. Mol Reprod Dev 71:444–452

    Article  PubMed  CAS  Google Scholar 

  107. Andrade YN, Fernandes J, Vázquez E, Fernández-Fernández JM, Arniges M et al (2005) TRPV4 channel is involved in the coupling of fluid viscosity changes to epithelial ciliary activity. J Cell Biol 168:869–874

    Article  PubMed  CAS  Google Scholar 

  108. Watanabe H, Davis JB, Smart D, Jerman JC, Smith GD et al (2002) Activation of TRPV4 channels (hVRL-2/mTRP12) by phorbol derivatives. J Biol Chem 277:13569–13577

    Article  PubMed  CAS  Google Scholar 

  109. Waning J, Vriens J, Owsianik G, Stuwe L, Mally S et al (2007) A novel function of capsaicin-sensitive TRPV1 channels: involvement in cell migration. Cell Calcium 42:17–25

    Article  PubMed  CAS  Google Scholar 

  110. Shibasaki K, Suzuki M, Mizuno A, Tominaga M (2007) Effects of body temperature on neural activity in the hippocampus: regulation of resting membrane potentials by transient receptor potential vanilloid 4. J Neurosci 27:1566–1575

    Article  PubMed  CAS  Google Scholar 

  111. Sokabe T, Fukumi-Tominaga T, Yonemura S, Mizuno A, Tominaga M (2010) The TRPV4 channel contributes to intercellular junction formation in keratinocytes. J Biol Chem 285:18749–18758

    Article  PubMed  CAS  Google Scholar 

  112. Goswami C, Rademacher N, Smalla KH, Kalscheuer V, Ropers HH, Gundelfinger ED, Hucho T (2010) TRPV1 acts as a synaptic protein and regulates vesicle recycling. J Cell Sci 123:2045–2057

    Article  PubMed  CAS  Google Scholar 

  113. Odell AF, Van Helden DF, Scott JL (2008) The spectrin cytoskeleton influences the surface expression and activation of human transient receptor potential channel 4 channels. J Biol Chem 283:4395–4407

    Article  PubMed  CAS  Google Scholar 

  114. Miehe S, Bieberstein A, Arnould I, Ihdene O, Rütten H, Strübing C (2010) The phospholipid-binding protein SESTD1 is a novel regulator of the transient receptor potential channels TRPC4 and TRPC5. J Biol Chem 285:12426–12434

    Article  PubMed  CAS  Google Scholar 

  115. Cioffi DL, Wu S, Alexeyev M, Goodman SR, Zhu MX, Stevens T (2005) Activation of the endothelial store-operated ISOC Ca2+ channel requires interaction of protein 4.1 with TRPC4. Circ Res 97:1164–1172

    Article  PubMed  CAS  Google Scholar 

  116. Pan Z, Yang H, Mergler S, Liu H, Tachado SD et al (2008) Dependence of regulatory volume decrease on transient receptor potential vanilloid 4 (TRPV4) expression in human corneal epithelial cells. Cell Calcium 44:374–385

    Article  PubMed  CAS  Google Scholar 

  117. Becker D, Blase C, Bereiter-Hahn J, Jendrach M (2005) TRPV4 exhibits a functional role in cell-volume regulation. J Cell Sci 118:2435–2440

    Article  PubMed  CAS  Google Scholar 

  118. Liu X, Bandyopadhyay B, Nakamoto T, Singh B, Liedtke W et al (2006) A role for AQP5 in activation of TRPV4 by hypotonicity: concerted involvement of AQP5 and TRPV4 in regulation of cell volume recovery. J Biol Chem 281:15485–15495

    Article  PubMed  CAS  Google Scholar 

  119. Cantiello HF, Prat AG, Bonventre JV, Cunningham CC, Hartwig JH et al (1993) Actin-binding protein contributes to cell volume regulatory ion channel activation in melanoma cells. J Biol Chem 268:4596–4599

    PubMed  CAS  Google Scholar 

  120. Blase C, Becker D, Kappel S, Bereiter-Hahn J (2009) Microfilament dynamics during HaCaT cell volume regulation. Eur J Cell Biol 88:131–139

    Article  PubMed  CAS  Google Scholar 

  121. Becker D, Bereiter-Hahn J, Jendrach M (2009) Functional interaction of the cation channel transient receptor potential vanilloid 4 (TRPV4) and actin in volume regulation. Eur J Cell Biol 88:141–152

    Article  PubMed  CAS  Google Scholar 

  122. Willette RN et al (2008) Systemic activation of the transient receptor potential vanilloid subtype 4 channel causes endothelial failure and circulatory collapse: Part 2. J Pharmacol Exp Ther 326:443–452

    Article  PubMed  CAS  Google Scholar 

  123. Zaninetti R et al (2011) Activation of TRPV4 channels reduces migration of immortalized neuroendocrine cells. J Neurochem 116:606–615

    Article  PubMed  CAS  Google Scholar 

  124. Wang JP, Tseng CS, Sun SP, Chen YS, Tsai CR, Hsu MF (2005) Capsaicin stimulates the non-store-operated Ca2+ entry but inhibits the store-operated Ca2+ entry in neutrophils. Toxicol Appl Pharmacol 209:134–144

    Article  PubMed  CAS  Google Scholar 

  125. Bernabò N et al (2010) Role of TRPV1 channels during the acquisition of fertilizing ability in boar spermatozoa. Vet Res Commun 34(Suppl 1):S5–S8

    Article  PubMed  Google Scholar 

  126. Bernabò N, Pistilli MG, Mattioli M, Barboni B (2010) Role of TRPV1 channels in boar spermatozoa acquisition of fertilizing ability. Mol Cell Endocrinol 323:224–231

    Article  PubMed  CAS  Google Scholar 

  127. Rosado JA, Sage SO (2001) Activation of store-mediated calcium entry by secretion-like coupling between the inositol 1,4,5-trisphosphate receptor type II and human transient receptor potential (hTrp1) channels in human platelets. Biochem J 356:191–198

    Article  PubMed  CAS  Google Scholar 

  128. Ramos AJ, Cantero MR, Zhang P, Raychowdhury MK, Green A, MacPhee D, Cantiello HF (2008) Morphological and electrical properties of human trophoblast choriocarcinoma, BeWo cells. Placenta 29:492–502

    Article  PubMed  CAS  Google Scholar 

  129. Wen Z, Han L, Bamburg JR, Shim S, Ming GL, Zheng JQ (2007) BMP gradients steer nerve growth cones by a balancing act of LIM kinase and Slingshot phosphatase on ADF/cofilin. J Cell Biol 178:107–119

    Article  PubMed  CAS  Google Scholar 

  130. Wu S, Chen H, Alexeyev MF, King JA, Moore TM, Stevens T, Balczon RD (2007) Microtubule motors regulate ISOC activation necessary to increase endothelial cell permeability. J Biol Chem 282:34801–34808

    Article  PubMed  CAS  Google Scholar 

  131. Redondo PC, Harper AG, Sage SO, Rosado JA (2007) Dual role of tubulin-cytoskeleton in store-operated calcium entry in human platelets. Cell Signal 19:2147–2154

    Article  PubMed  CAS  Google Scholar 

  132. Lemonnier L, Trebak M, Lievremont JP, Bird GS, Putney JW Jr (2006) Protection of TRPC7 cation channels from calcium inhibition by closely associated SERCA pumps. FASEB J 20:503–505

    PubMed  CAS  Google Scholar 

  133. Cho H, Shin J, Shin CY, Lee SY, Oh U (2002) Mechanosensitive ion channels in cultured sensory neurons of neonatal rats. J Neurosci 22:1238–1247

    PubMed  CAS  Google Scholar 

  134. Mandadi S et al (2006) Increased sensitivity of desensitized TRPV1 by PMA occurs through PKCepsilon-mediated phosphorylation at S800. Pain 123:106–116

    Article  PubMed  CAS  Google Scholar 

  135. Numazaki M, Tominaga T, Takeuchi K, Murayama N, Toyooka H, Tominaga M (2003) Structural determinant of TRPV1 desensitization interacts with calmodulin. Proc Natl Acad Sci USA 100:8002–8006

    Article  PubMed  CAS  Google Scholar 

  136. Rosenbaum T, Gordon-Shaag A, Munari M, Gordon SE (2004) Ca2+/calmodulin modulates TRPV1 activation by capsaicin. J Gen Physiol 123:53–62

    Article  PubMed  CAS  Google Scholar 

  137. Mohapatra DP, Nau C (2005) Regulation of Ca2+-dependent desensitization in the vanilloid receptor TRPV1 by calcineurin and cAMP-dependent protein kinase. J Biol Chem 280:13424–13432

    Article  PubMed  CAS  Google Scholar 

  138. Price TJ, Jeske NA, Flores CM, Hargreaves KM (2005) Pharmacological interactions between calcium/calmodulin-dependent kinase II alpha and TRPV1 receptors in rat trigeminal sensory neurons. Neurosci Lett 389:94–98

    Article  PubMed  CAS  Google Scholar 

  139. Lishko PV, Procko E, Jin X, Phelps CB, Gaudet R (2007) The ankyrin repeats of TRPV1 bind multiple ligands and modulate channel sensitivity. Neuron 54:905–918

    Article  PubMed  CAS  Google Scholar 

  140. Holakovska B, Grycova L, Bily J, Teisinger J (2011) Characterization of calmodulin binding domains in TRPV2 and TRPV5 C-tails. Amino Acids 40:741–748

    Article  PubMed  CAS  Google Scholar 

  141. Phelps CB, Wang RR, Choo SS, Gaudet R (2010) Differential regulation of TRPV1, TRPV3, and TRPV4 sensitivity through a conserved binding site on the ankyrin repeat domain. J Biol Chem 285:731–740

    Article  PubMed  CAS  Google Scholar 

  142. Yuan JP et al (2003) Homer binds TRPC family channels and is required for gating of TRPC1 by IP3 receptors. Cell 114:777–789

    Article  PubMed  CAS  Google Scholar 

  143. Caprodossi S et al (2011) Capsaicin (CPS) promotes a more aggressive gene expression phenotype and invasiveness in null-TRPV1 urothelial cancer cells. Carcinogenesis 32:686–694

    Article  PubMed  CAS  Google Scholar 

  144. Bhalla KN (2003) Microtubule-targeted anticancer agents and apoptosis. Oncogene 22:9075–9086

    Article  PubMed  CAS  Google Scholar 

  145. Blagosklonny MV, Fojo T (1999) Molecular effects of paclitaxel: myths and reality (a critical review). Int J Cancer 83:151–156

    Article  PubMed  CAS  Google Scholar 

  146. Lee JJ, Swain SM (2006) Peripheral neuropathy induced by microtubule-stabilizing agents. J Clin Oncol 24:1633–1642

    Article  PubMed  CAS  Google Scholar 

  147. White JG, Rao GH (2008) Effects of a microtubule stabilizing agent on the response of platelets to vincristine. Blood 60:474–483

    Google Scholar 

  148. Röytta M, Raine CS (1985) Taxol-induced neuropathy: further ultrastructural studies of nerve fibre changes in situ. J Neurocytol 14:157–175

    Article  PubMed  Google Scholar 

  149. Gilbar P, Hain A, Peereboom VM (2009) Nail toxicity induced by cancer chemotherapy. J Oncol Pharm Pract 15:143–155

    Article  PubMed  CAS  Google Scholar 

  150. Canta A, Chiorazzi A, Cavaletti G (2009) Tubulin: a target for antineoplastic drugs into the cancer cells but also in the peripheral nervous system. Curr Med Chem 16:1315–1324

    Article  PubMed  CAS  Google Scholar 

  151. Topp KS, Tanner KD, Levine JD (2000) Damage to the cytoskeleton of large diameter sensory neurons and myelinated axons in vincristine-induced painful peripheral neuropathy in the rat. J Comp Neurol 424:563–576

    Article  PubMed  CAS  Google Scholar 

  152. Tanner KD, Levine JD, Topp KS (1998) Microtubule disorientation and axonal swelling in unmyelinated sensory axons during vincristine-induced painful neuropathy in rat. J Comp Neurol 395:481–492

    Article  PubMed  CAS  Google Scholar 

  153. Goswami C, Goswami L (2010) Filamentous microtubules in the neuronal spinous process and the role of microtubule regulatory drugs in neuropathic pain. Neurochem Int 57:497–503

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

This review reflects the views and interpretation of the data available in the literature. The author regrets for not being able to include all the scientific works due to space limitations. The author acknowledges the support and intellectual inputs from Mr. Rakesh Majhi and other lab members. CG acknowledges the support previously obtained from Freie University of Berlin and Max Planck Institute of Molecular Genetics, Berlin. Financial support from NISER, Bhubaneswar is appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chandan Goswami .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Goswami, C. (2012). TRP-Mediated Cytoskeletal Reorganization: Implications for Disease and Drug Development. In: Szallasi, A., Bíró, T. (eds) TRP Channels in Drug Discovery. Methods in Pharmacology and Toxicology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-077-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-077-9_2

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-076-2

  • Online ISBN: 978-1-62703-077-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics