Skip to main content

Endotoxin-Induced Airway Inflammation and Asthma Models

  • Protocol
  • First Online:

Part of the book series: Methods in Pharmacology and Toxicology ((MIPT))

Abstract

Lung inflammation models in experimental animals are particularly important to study the mechanisms and complex neuroimmune interactions involved in the pathophysiological processes, to identify key mediators and target molecules, as well as to test novel drug candidates. Endotoxin (lipopolysaccharide) administration locally into the airways (intranasally or intratracheally) is often used in a variety of laboratory animals for translational research to explore nonallergic inflammatory pathways, as well as to provide information on important mediators and their potential drug targets, although these conditions are not considered to be disease models. Allergic airway inflammation and asthma can be mimicked in rodents and larger animals by sensitization and then elicitation with ovalbumin, house dust mite, cockroach, plant, or helminth antigens. Mouse, rat, and guinea pig models have the major advantage of being easily available and appropriate for genetic modulations, but larger animals (cats, dogs, pigs, sheep, horse, or even primates) are often structurally and functionally closer to human conditions. A broad range of experimental protocols and assessments are used worldwide by different research groups. Differences in technical details greatly influence the results and the conclusions. Although the basic pathophysiology is similar after certain inflammatory stimuli, the effects depend on the animal species, strains, gender and age, the type and dose of the inflammatory or allergic agent, as well as the route of administration and the duration of exposure and investigation. In the present chapter we summarize the currently used research protocols and experimental paradigms of nonallergic and allergic lung inflammation focusing on the major advantages and disadvantages.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   159.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   209.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   209.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Banner KH, Igney F, Poll C (2011) TRP channels: emerging targets for respiratory disease. Pharmacol Ther 130:371–384

    Article  PubMed  CAS  Google Scholar 

  2. Jiang LH, Gamper N, Beech DJ (2011) Properties and therapeutic potential of transient receptor potential channels with putative roles in adversity: focus on TRPC5, TRPM2 and TRPA1. Curr Drug Targets 12:724–736

    Article  PubMed  CAS  Google Scholar 

  3. Nassini R et al (2010) Transient receptor potential channels as novel drug targets in respiratory diseases. Curr Opin Investig Drugs 11:535–542

    PubMed  CAS  Google Scholar 

  4. Lee LY, Gu Q (2009) Role of TRPV1 in inflammation-induced airway hypersensitivity. Curr Opin Pharmacol 9:243–249

    Article  PubMed  CAS  Google Scholar 

  5. Bessac BF, Jordt SE (2008) Breathtaking TRP channels: TRPA1 and TRPV1 in airway chemosensation and reflex control. Physiology (Bethesda) 23:360–370

    Article  CAS  Google Scholar 

  6. Nilius B, Voets T, Peters J (2005) TRP channels in disease. Sci STKE 2005:re8

    Article  PubMed  Google Scholar 

  7. Kurucz I, Szelenyi I (2006) Current animal models of bronchial asthma. Curr Pharm Des 12:3175–3194

    Article  PubMed  CAS  Google Scholar 

  8. Zosky GR, Sly PD (2007) Animal models of asthma. Clin Exp Allergy 37:973–988

    Article  PubMed  CAS  Google Scholar 

  9. Allen JE et al (2009) Animal models of airway inflammation and airway smooth muscle remodelling in asthma. Pulm Pharmacol Ther 22:455–465

    Article  PubMed  CAS  Google Scholar 

  10. Chen H, Bai C, Wang X (2010) The value of the lipopolysaccharide-induced acute lung injury model in respiratory medicine. Expert Rev Respir Med 4:773–783

    Article  PubMed  CAS  Google Scholar 

  11. Kips JC et al (2003) Murine models of asthma. Eur Respir J 22:374–382

    Article  PubMed  CAS  Google Scholar 

  12. Bates JH, Rincon M, Irvin CG (2009) Animal models of asthma. Am J Physiol Lung Cell Mol Physiol 297:401–410

    Article  CAS  Google Scholar 

  13. Wang HM, Bodenstein M, Markstaller K (2008) Overview of the pathology of three widely used animal models of acute lung injury. Eur Surg Res 40:305–316

    Article  PubMed  CAS  Google Scholar 

  14. Rietschel ET et al (2000) Bacterial endotoxin: molecular relationships of structure to activity and function. FASEB J 8:217–225

    Google Scholar 

  15. Lapa e Silva JR et al (2000) Endotoxins, asthma, and allergic immune responses. Toxicology 152:31–35

    Article  PubMed  CAS  Google Scholar 

  16. Hoshino K et al (1999) Cutting edge: Toll-like receptor 4 (TLR4)-deficient mice are hyporesponsive to lipopolysaccharide: evidence for TLR4 as the Lps gene product. J Immunol 162:3749–3752

    PubMed  CAS  Google Scholar 

  17. Savov JD et al (2005) Toll-like receptor 4 antagonist (E5564) prevents the chronic airway response to inhaled lipopolysaccharide. Am J Physiol Lung Cell Mol Physiol 289:329–337

    Article  CAS  Google Scholar 

  18. Lu YC, Yeh WC, Ohashi PS (2008) LPS/TLR4 signal transduction pathway. Cytokine 42:145–151

    Article  PubMed  CAS  Google Scholar 

  19. O’Leary EC, Marder P, Zuckerman SH (1996) Glucocorticoid effects in an endotoxin-induced rat pulmonary inflammation model: differential effects on neutrophil influx, integrin expression, and inflammatory mediators. Am J Respir Cell Mol Biol 15:97–106

    PubMed  Google Scholar 

  20. Ulich TR et al (1991) Intratracheal injection of endotoxin and cytokines. II. Interleukin-6 and transforming growth factor beta inhibit acute inflammation. Am J Pathol 138:1097–1101

    PubMed  CAS  Google Scholar 

  21. Ulich TR et al (1991) The intratracheal administration of endotoxin and cytokines. I. Characterization of LPS-induced IL-1 and TNF mRNA expression and the LPS-, IL-1-, and TNF-induced inflammatory infiltrate. Am J Pathol 138:1485–1496

    PubMed  CAS  Google Scholar 

  22. Wesselius LJ et al (1995) Synergism of intratracheally administered tumor necrosis factor with interleukin-1 in the induction of lung edema in rats. J Lab Clin Med 125:618–625

    PubMed  CAS  Google Scholar 

  23. Haddad EB et al (2001) Role of p38 MAP kinase in LPS-induced airway inflammation in the rat. Br J Pharmacol 132:1715–1724

    Article  PubMed  CAS  Google Scholar 

  24. Togbe D et al (2007) Toll-like receptor and tumour necrosis factor dependent endotoxin-induced acute lung injury. Int J Exp Path 88:387–391

    Article  CAS  Google Scholar 

  25. Takeda M et al (2011) Proliferation of sensory C-fibers and subsequent neurogenic inflammation in rat airway induced by inhaled lipopolysaccharide. Neurotoxicology 32:954–962

    Article  PubMed  CAS  Google Scholar 

  26. Pauwels RA et al (1990) The effect of endotoxin inhalation on airway responsiveness and cellular influx in rats. Am Rev Respir Dis 141:540–545

    Article  PubMed  CAS  Google Scholar 

  27. Harmsen AG (1988) Role of alveolar macrophages in lipopolysaccharide-induced neutrophil accumulation. Infect Immun 56:1858–1863

    PubMed  CAS  Google Scholar 

  28. Goncalves de Moraes VL et al (1996) Effect of cyclo-oxygenase inhibitors and modulators of cyclic AMP formation on lipopolysaccharide-induced neutrophil infiltration in mouse lung. Br J Pharmacol 117:1792–1796

    Article  PubMed  CAS  Google Scholar 

  29. Gordon T et al (1991) Airway oedema and obstruction in guinea pigs exposed to inhaled endotoxin. Br J Ind Med 48:629–635

    PubMed  CAS  Google Scholar 

  30. Savov JD et al (2002) Neutrophils play a critical role in development of LPS-induced airway disease. Am J Physiol Lung Cell Mol Physiol 283:952–962

    Google Scholar 

  31. Barnes PJ (2001) Neurogenic inflammation in the airways. Respir Physiol 125:145–154

    Article  PubMed  CAS  Google Scholar 

  32. Kraneveld AD, Nijkamp FP (2001) Tachykinins and neuro-immune interactions in asthma. Int Immunopharmacol 1:1629–1650

    Article  PubMed  CAS  Google Scholar 

  33. Vargaftig BB (1997) Modifications of experimental bronchopulmonary hyperresponsiveness. Am J Respir Crit Care Med 156:97–102

    Google Scholar 

  34. Lefort J, Motreff L, Boris Vargaftig B (2001) Airway administration of Escherichia coli endotoxin to mice induces glucocorticosteroid-resistant bronchoconstriction and vasopermeation. Am J Respir Cell Mol Biol 24:345–351

    PubMed  CAS  Google Scholar 

  35. Helyes Z et al (2007) Role of transient receptor potential vanilloid 1 receptors in endotoxin-induced airway inflammation in the mouse. Am J Physiol Lung Cell Mol Physiol 292:1173–1181

    Article  CAS  Google Scholar 

  36. Helyes Z et al (2009) Impaired defense mechanism against inflammation, hyperalgesia, and airway hyperreactivity in somatostatin 4 receptor gene-deleted mice. Proc Natl Acad Sci USA 106:13088–13093

    Article  PubMed  CAS  Google Scholar 

  37. Helyes Z et al (2010) Involvement of preprotachykinin A gene-encoded peptides and the neurokinin 1 receptor in endotoxin-induced murine airway inflammation. Neuro­peptides 44:399–406

    Article  PubMed  CAS  Google Scholar 

  38. Elekes K et al (2007) Role of capsaicin-sensitive afferents and sensory neuropeptides in endotoxin-induced airway inflammation and consequent bronchial hyperreactivity in the mouse. Regul Pept 141:44–54

    Article  PubMed  CAS  Google Scholar 

  39. Elekes K et al (2008) Inhibitory effects of synthetic somatostatin receptor subtype 4 agonists on acute and chronic airway inflammation and hyperreactivity in the mouse. Eur J Pharmacol 578:313–322

    Article  PubMed  CAS  Google Scholar 

  40. Elekes K et al (2011) Pituitary adenylate cyclase-activating polypeptide plays an anti-inflammatory role in endotoxin-induced airway inflammation: in vivo study with gene-deleted mice. Peptides 32:1439–1446

    Article  PubMed  CAS  Google Scholar 

  41. Vincent D et al (1993) Intratracheal E. coli lipopolysaccharide induces platelet-dependent bronchial hyperreactivity. J Appl Physiol 74:1027–1038

    Article  PubMed  CAS  Google Scholar 

  42. Toward TJ, Smith N, Broadley KJ (2004) Effect of phosphodiesterase-5 inhibitor, sildenafil (Viagra), in animal models of airways disease. Am J Respir Crit Care Med 169:227–234

    Article  PubMed  Google Scholar 

  43. Long NC, Frevert CW, Shore SA (1996) Role of C fibers in the inflammatory response to intratracheal lipopolysaccharide. Am J Physiol 271:L425–L431

    PubMed  CAS  Google Scholar 

  44. Tsuji F et al (2010) Effects of SA13353, a transient receptor potential vanilloid 1 agonist, on leukocyte infiltration in lipopolysaccharide-induced acute lung injury and ovalbumin-induced allergic airway inflammation. J Pharmacol Sci 112:487–490

    Article  PubMed  CAS  Google Scholar 

  45. Bowden JJ et al (1996) Sensory denervation by neonatal capsaicin treatment exacerbates Mycoplasma pulmonis infection in rat airways. Am J Physiol 270:393–403

    Google Scholar 

  46. Franco-Penteado CF et al (2004) Mechanisms involved in the enhancement of allergic airways neutrophil influx by permanent C-fiber degeneration in rats. J Pharmacol Exp Ther 313:440–448

    Article  PubMed  CAS  Google Scholar 

  47. Hashiba Y et al (1989) Capsaicin-sensitive nerves exert an inhibitory effect on the development of fibrin-induced pulmonary edema in rats. Am Rev Respir Dis 140:652–658

    PubMed  CAS  Google Scholar 

  48. Baraldi PG et al (2010) Transient receptor potential ankyrin 1 (TRPA1) channel as emerging target for novel analgesics and anti-inflammatory agents. J Med Chem 53:5085–5107

    Article  PubMed  CAS  Google Scholar 

  49. Szarka RJ et al (1997) A murine model of pulmonary damage induced by lipopolysaccharide via intranasal instillation. J Immunol Methods 202:49–57

    Article  PubMed  CAS  Google Scholar 

  50. Delclaux C et al (1997) Alveolar neutrophils in endotoxin-induced and bacteria-induced acute lung injury in rats. Am J Physiol 273:104–112

    Google Scholar 

  51. Yamada H et al (2000) Acid instillation enhances the inflammatory response to subsequent lipopolysaccharide challenge in rats. Am J Respir Crit Care Med 162:1366–1371

    PubMed  CAS  Google Scholar 

  52. Harkema JR, Hotchkiss JA (1992) In vivo effects of endotoxin on intraepithelial mucosubstances in rat pulmonary airways. Quantitative histochemistry. Am J Pathol 141:307–317

    PubMed  CAS  Google Scholar 

  53. Yamamoto T et al (1998) The role of leukocyte emigration and IL-8 on the development of lipopolysaccharide-induced lung injury in rabbits. J Immunol 161:5704–5709

    PubMed  CAS  Google Scholar 

  54. Chignard M, Balloy V (2000) Neutrophil recruitment and increased permeability during acute lung injury induced by lipopolysaccharide. Am J Physiol Lung Cell Mol Physiol 279:1083–1090

    Google Scholar 

  55. Rocksén D et al (2003) Vitamin E reduces transendothelial migration of neutrophils and prevents lung injury in endotoxin-induced airway inflammation. Am J Respir Cell Mol Biol 28:199–207

    Article  PubMed  CAS  Google Scholar 

  56. Okamoto T et al (2004) Multiple contributing roles for NOS2 in LPS-induced acute airway inflammation in mice. Am J Physiol Lung Cell Mol Physiol 286:198–209

    Article  Google Scholar 

  57. Gatti S et al (1993) Role of tumour necrosis factor and reactive oxygen intermediates in lipopolysaccharide-induced pulmonary oedema and lethality. Clin Exp Immunol 91:456–461

    Article  PubMed  CAS  Google Scholar 

  58. Conti G et al (2010) Evaluation of lung inflammation induced by intratracheal administration of LPS in mice: comparison between MRI and histology. MAGMA 23:93–101

    Article  PubMed  CAS  Google Scholar 

  59. George CL et al (2001) Endotoxin responsiveness and subchronic grain dust-induced airway disease. Am J Physiol Lung Cell Mol Physiol 280:L203–L213

    PubMed  CAS  Google Scholar 

  60. Brass DM et al (2003) Subchronic endotoxin inhalation causes persistent airway disease. Am J Physiol Lung Cell Mol Physiol 285:755–761

    Google Scholar 

  61. Brass DM, Savov JD, Schwartz DA (2003) Intercellular adhesion molecule-1 plays a pivotal role in endotoxin-induced airway disease. Chest 123:416S

    Article  PubMed  Google Scholar 

  62. Savov JD et al (2003) Fibrinolysis in LPS-induced chronic airway disease. Am J Physiol Lung Cell Mol Physiol 285:940–948

    Google Scholar 

  63. Brass DM et al (2008) Chronic LPS inhalation causes emphysema-like changes in mouse lung that are associated with apoptosis. Am J Respir Cell Mol Biol 39:584–590

    Article  PubMed  CAS  Google Scholar 

  64. O’Leary EC, Zuckerman SH (1997) Glucocorticoid-mediated inhibition of neutrophil emigration in an endotoxin-induced rat pulmonary inflammation model occurs without an effect on airways MIP-2 levels. Am J Respir Cell Mol Biol 16:267–274

    PubMed  Google Scholar 

  65. Aimbire F et al (2005) Effect of LLLT Ga-Al-As (685 nm) on LPS-induced inflammation of the airway and lung in the rat. Lasers Med Sci 20:11–20

    Article  PubMed  CAS  Google Scholar 

  66. Mafra de Lima F et al (2010) Low intensity laser therapy (LILT) in vivo acts on the neutrophils recruitment and chemokines/cytokines levels in a model of acute pulmonary inflammation induced by aerosol of lipopolysaccharide from Escherichia coli in rat. J Photochem Photobiol B 101:271–278

    Article  PubMed  CAS  Google Scholar 

  67. Garat C et al (1995) Alveolar endotoxin increases alveolar liquid clearance in rats. J Appl Physiol 79:2021–2028

    PubMed  CAS  Google Scholar 

  68. de Garavilla L et al (2005) A novel, potent dual inhibitor of the leukocyte proteases cathepsin G and chymase: molecular mechanisms and anti-inflammatory activity in vivo. J Biol Chem 280:18001–18007

    Article  PubMed  CAS  Google Scholar 

  69. Kaneko Y et al (2007) Effects of theophylline on chronic inflammatory lung injury induced by LPS exposure in guinea pigs. Allergol Int 56:445–456

    Article  PubMed  CAS  Google Scholar 

  70. De Castro CM et al (1995) Fenspiride: an anti-inflammatory drug with potential benefits in the treatment of endotoxemia. Eur J Pharmacol 294:669–676

    Article  PubMed  Google Scholar 

  71. Arbibe L et al (1998) Generation of lyso-phospholipids from surfactant in acute lung injury is mediated by type-II phospholipase A2 and inhibited by a direct surfactant protein A-phospholipase A2 protein interaction. J Clin Invest 102:1152–1160

    Article  PubMed  CAS  Google Scholar 

  72. Marek W et al (2008) Endotoxin-induced airway hyperresponsiveness in rabbits: contribution of neuropeptides. J Physiol Pharmacol 59:421–432

    PubMed  Google Scholar 

  73. Jie Z et al (2003) Protective effects of alpha 1-antitrypsin on acute lung injury in rabbits induced by endotoxin. Chin Med J (Engl) 116:1678–1682

    CAS  Google Scholar 

  74. Mikawa K et al (2003) ONO-1714, a nitric oxide synthase inhibitor, attenuates endotoxin-induced acute lung injury in rabbits. Anesth Analg 97:1751–1755

    Article  PubMed  CAS  Google Scholar 

  75. Pacht ER, Kindt GC, Lykens MG (1992) Increased antioxidant activity in bronchoalveolar lavage fluid after acute lung injury in anesthetized sheep. Crit Care Med 20:1441–1447

    Article  PubMed  CAS  Google Scholar 

  76. Kirov MY et al (2004) Extravascular lung water assessed by transpulmonary single thermodilution and postmortem gravimetry in sheep. Crit Care 8:R451–R458

    Article  PubMed  Google Scholar 

  77. Nieman GF et al (1996) Surfactant replacement in the treatment of sepsis-induced adult respiratory distress syndrome in pigs. Crit Care Med 24:1025–1033

    Article  PubMed  CAS  Google Scholar 

  78. Lutz C et al (1998) Aerosolized surfactant improves pulmonary function in endotoxin-induced lung injury. Am J Respir Crit Care Med 158:840–845

    PubMed  CAS  Google Scholar 

  79. Maurenbrecher H et al (2001) An animal model of response and nonresponse to inhaled nitric oxide in endotoxin-induced lung injury. Chest 120:573–581

    Article  PubMed  CAS  Google Scholar 

  80. Tabor DR, Kiel DP, Jacobs RF (1987) Receptor-mediated ingestion responses by lung macrophages from a canine model of ARDS. J Leukoc Biol 41:539–543

    PubMed  CAS  Google Scholar 

  81. Welsh CH et al (1988) Pentoxifylline decreases endotoxin-induced pulmonary neutrophil sequestration and extravascular protein accumulation in the dog. Am Rev Respir Dis 138:1106–1114

    PubMed  CAS  Google Scholar 

  82. Cao L et al (2010) Maternal endotoxin exposure attenuates allergic airway disease in infant rats. Am J Physiol Lung Cell Mol Physiol 298:670–677

    Article  CAS  Google Scholar 

  83. Brackett DJ et al (1985) Evaluation of cardiac output, total peripheral vascular resistance, and plasma concentrations of vasopressin in the conscious, unrestrained rat during endotoxemia. Circ Shock 17:273–284

    PubMed  CAS  Google Scholar 

  84. Natanson C et al (1986) Gram-negative bacteremia produces both severe systolic and diastolic cardiac dysfunction in a canine model that simulates human septic shock. J Clin Invest 78:259–270

    Article  PubMed  CAS  Google Scholar 

  85. Law WR, Ferguson JL (1988) Naloxone alters organ perfusion during endotoxin shock in conscious rats. Am J Physiol 255:H1106–H1113

    PubMed  CAS  Google Scholar 

  86. Denis M et al (1994) A mouse model of lung injury induced by microbial products: implication of tumor necrosis factor. Am J Respir Cell Mol Biol 10:658–664

    PubMed  CAS  Google Scholar 

  87. Peristeris P et al (1992) N-acetylcysteine and glutathione as inhibitors of tumor necrosis factor production. Cell Immunol 140:390–399

    Article  PubMed  CAS  Google Scholar 

  88. Lefort J et al (1998) Systemic administration of endotoxin induces bronchopulmonary hyperreactivity dissociated from TNF-alpha formation and neutrophil sequestration into the murine lungs. J Immunol 161:474–480

    PubMed  CAS  Google Scholar 

  89. Kuo MY et al (2011) Luteolin attenuates the pulmonary inflammatory response involves abilities of antioxidation and inhibition of MAPK and NFκB pathways in mice with endotoxin-induced acute lung injury. Food Chem Toxicol 49:2660–2666

    Article  PubMed  CAS  Google Scholar 

  90. Yang KY et al (2011) IV delivery of induced pluripotent stem cells attenuates endotoxin-induced acute lung injury in mice. Chest 140:1243–1253

    Article  PubMed  CAS  Google Scholar 

  91. Arbibe L et al (1997) Endotoxin induces expression of type II phospholipase A2 in macrophages during acute lung injury in guinea pigs: involvement of TNF-alpha in lipopolysaccharide-induced type II phospholipase A2 synthesis. J Immunol 159:391–400

    PubMed  CAS  Google Scholar 

  92. Larsson R et al (2000) Dose-dependent activation of lymphocytes in endotoxin-induced airway inflammation. Infect Immun 68:6962–6969

    Article  PubMed  CAS  Google Scholar 

  93. Ciencewicki J, Trivedi S, Kleeberger SR (2008) Oxidants and the pathogenesis of lung diseases. J Allergy Clin Immunol 122:456–468

    Article  PubMed  CAS  Google Scholar 

  94. Balakrishna S et al (2011) Environmentally persistent free radicals induce airway hyperresponsiveness in neonatal rat lungs. Part Fibre Toxicol 8:11

    Article  PubMed  CAS  Google Scholar 

  95. Donaldson K et al (2005) Combustion-derived nanoparticles: a review of their toxicology following inhalation exposure. Part Fibre Toxicol 2:10

    Article  PubMed  CAS  Google Scholar 

  96. Sydlik U et al (2009) The compatible solute ectoine protects against nanoparticle-induced neutrophilic lung inflammation. Am J Respir Crit Care Med 180:29–35

    Article  PubMed  CAS  Google Scholar 

  97. Sydlik U et al (2006) Ultrafine carbon particles induce apoptosis and proliferation in rat lung epithelial cells via specific signaling pathways both using EGF-R. Am J Physiol Lung Cell Mol Physiol 291:725–733

    Article  CAS  Google Scholar 

  98. Kim YM et al (2005) Ultrafine carbon particles induce interleukin-8 gene transcription and p38 MAPK activation in normal human bronchial epithelial cells. Am J Physiol Lung Cell Mol Physiol 288:432–441

    Article  CAS  Google Scholar 

  99. Bolognin M et al (2009) Characterisation of the acute and reversible airway inflammation induced by cadmium chloride inhalation in healthy dogs and evaluation of the effects of salbutamol and prednisolone. Vet J 179:443–450

    Article  PubMed  CAS  Google Scholar 

  100. Gavett SH, Oberdörster G (1994) Cadmium chloride and cadmium metallothionein-induced pulmonary injury and recruitment of polymorphonuclear leukocytes. Exp Lung Res 20:517–537

    Article  PubMed  CAS  Google Scholar 

  101. Wirth D et al (2004) Evidence for a role of heat shock factor 1 in inhibition of NF-kappaB pathway during heat shock response-mediated lung protection. Am J Physiol Lung Cell Mol Physiol 287:953–961

    Article  CAS  Google Scholar 

  102. Zhang W et al (2010) Anti-inflammatory effects of formoterol and ipratropium bromide against acute cadmium-induced pulmonary inflammation in rats. Eur J Pharmacol 628:171–178

    Article  PubMed  CAS  Google Scholar 

  103. Mannino DM et al (2004) Urinary cadmium levels predict lower lung function in current and former smokers: data from the Third National Health and Nutrition Examination Survey. Thorax 59:194–198

    Article  PubMed  CAS  Google Scholar 

  104. Kirschvink N et al (2005) Repeated cadmium nebulizations induce pulmonary MMP-2 and MMP-9 production and emphysema in rats. Toxicology 211:36–48

    Article  PubMed  CAS  Google Scholar 

  105. Corbel M, Boichot E, Lagente V (2000) Role of gelatinases MMP-2 and MMP-9 in tissue remodeling following acute lung injury. Braz J Med Biol Res 33:749–754

    Article  PubMed  CAS  Google Scholar 

  106. Abboud RT, Vimalanathan S (2008) Pathogenesis of COPD. Part I. The role of protease-antiprotease imbalance in emphysema. Int J Tuberc Lung Dis 12:361–367

    PubMed  CAS  Google Scholar 

  107. Hotchkiss JA et al (1989) Comparison of acute ozone-induced nasal and pulmonary inflammatory responses in rats. Toxicol Appl Pharmacol 98:289–302

    Article  PubMed  CAS  Google Scholar 

  108. Wagner JG et al (2003) Ozone exposure enhances endotoxin-induced mucous cell metaplasia in rat pulmonary airways. Toxicol Sci 74:437–446

    Article  PubMed  CAS  Google Scholar 

  109. Hatch GE et al (1994) Ozone dose and effect in humans and rats. A comparison using oxygen-18 labeling and bronchoalveolar lavage. Am J Respir Crit Care Med 150:676–683

    PubMed  CAS  Google Scholar 

  110. Harkema JR, Wagner JG (2002) Non-allergic models of mucous cell metaplasia and mucus hypersecretion in rat nasal and pulmonary airways. Novartis Found Symp 248:181–197, discussion 197-200, 277–282

    Article  PubMed  Google Scholar 

  111. Selig WM, Whalley ET, Ellis JL (2006) Asthma. In: Stevenson CS, Marshall LA, Morgan DW (eds) In vivo models of inflammation, 2nd edn. Birkhäuser Verlag, Basel, pp 1–28

    Google Scholar 

  112. Kucharewicz I, Bodzenta-Łukaszyk A, Buczko W (2008) Experimental asthma in rats. Pharmacol Rep 60:783–788

    PubMed  CAS  Google Scholar 

  113. Nials AT, Uddin S (2008) Mouse models of allergic asthma: acute and chronic allergen challenge. Dis Model Mech 1:213–220

    Article  PubMed  CAS  Google Scholar 

  114. Stevenson CS, Birrell MA (2011) Moving towards a new generation of animal models for asthma and COPD with improved clinical relevance. Pharmacol Ther 130:93–105

    Article  PubMed  CAS  Google Scholar 

  115. Colsoul B, Nilius B, Vennekens R (2009) On the putative role of transient receptor potential cation channels in asthma. Clin Exp Allergy 39:1456–1466

    Article  PubMed  CAS  Google Scholar 

  116. Sel S et al (2008) Loss of classical transient receptor potential 6 channel reduces allergic airway response. Clin Exp Allergy 38:1548–1558

    Article  PubMed  CAS  Google Scholar 

  117. Raemdonck K et al (2011) A role for sensory nerves in the late asthmatic response. Thorax 67(1):19–25

    Article  PubMed  Google Scholar 

  118. Watanabe N et al (2008) Immunohistochemical localization of transient receptor potential vanilloid subtype 1 in the trachea of ovalbumin-sensitized Guinea pigs. Int Arch Allergy Immunol 146:28–32

    Article  PubMed  CAS  Google Scholar 

  119. Dinh QT, Klapp BF, Fischer A (2006) Airway sensory nerve and tachykinins in asthma and COPD. Pneumologie 60:80–85

    Article  PubMed  CAS  Google Scholar 

  120. Li M et al (2011) The effect of substance P on asthmatic rat airway smooth muscle cell proliferation, migration, and cytoplasmic calcium concentration in vitro. J Inflamm 8:18

    Article  CAS  Google Scholar 

  121. Kucharewicz I et al (2008) The concentration of kynurenine in rat model of asthma. Folia Histochem Cytobiol 46:199–203

    Article  PubMed  CAS  Google Scholar 

  122. Brewer JM et al (1999) Aluminium hydroxide adjuvant initiates strong antigen-specific Th2 responses in the absence of IL-4- or IL-13-mediated signaling. J Immunol 163:6448–6454

    PubMed  CAS  Google Scholar 

  123. Fedele G et al (2007) Lipooligosaccharide from Bordetella pertussis induces mature human monocyte-derived dendritic cells and drives a Th2 biased response. Microbes Infect 9:855–863

    Article  PubMed  CAS  Google Scholar 

  124. Nakagome K et al (2005) Antigen-sensitized CD4+CD62Llow memory/effector T helper 2 cells can induce airway hyperresponsiveness in an antigen free setting. Respir Res 6:46

    Article  PubMed  CAS  Google Scholar 

  125. Renz H et al (1992) Aerosolized antigen exposure without adjuvent causes increased IgE production and increased airway responsiveness in the mouse. J Allergy Clin Immunol 89:1127–1138

    Article  PubMed  CAS  Google Scholar 

  126. Lefort J et al (1996) Effect of antigen provocation of IL-5 transgenic mice on eosinophil mobilization and bronchial hyperresponsiveness. J Allergy Clin Immunol 97:788–799

    Article  PubMed  CAS  Google Scholar 

  127. Eum S et al (1995) Eosinophil recruitment into the respiratory epithelium following antigenic challenge in hyper-IgE mice is accomplished by interleukin-5-dependent bronchial hyperresponsiveness. Proc Natl Acad Sci USA 92:12290–12294

    Article  PubMed  CAS  Google Scholar 

  128. Zuany-Amorim C, Vargaftig BB, Pretolani M (1994) Strain-dependency of leukotriene C4 generation from isolated lungs of immunised mice. Br J Pharmacol 112:1230–1236

    Article  PubMed  CAS  Google Scholar 

  129. Zuany-Amorim C, Cordeiro RSB, Vargaftig BB (1993) Involvement of platelet-activating factor in death following anaphylactic shock in boosted and in unboosted mice. Eur J Pharmacol 235:17–22

    Article  Google Scholar 

  130. Kool M et al (2008) Alum adjuvant boosts adaptive immunity by inducing uric acid and activating inflammatory dendritic cells. J Exp Med 205:869–882

    Article  PubMed  CAS  Google Scholar 

  131. Lloyd CM et al (2001) Resolution of bronchial hyperresponsiveness and pulmonary inflammation is associated with IL-3 and tissue leukocyte apoptosis. J Immunol 166:2033–2040

    PubMed  CAS  Google Scholar 

  132. Hailé S et al (1999) Mucous-cell metaplasia and inflammatory-cell recruitment are dissociated in allergic mice after antibody- and drug-dependent cell depletion in a murine model of asthma. Am J Respir Cell Mol Biol 20:891–902

    PubMed  Google Scholar 

  133. Hailé S et al (1999) Suppression of immediate and late responses to antigen by a non-anaphylactogenic anti-IgE antibody in a murine model of asthma. Eur Respir J 13:961–969

    Article  PubMed  Google Scholar 

  134. Trifilieff A, El-Hashim A, Bertrand C (2000) Time course of inflammatory and remodeling events in a murine model of asthma: effect of steroid treatment. Am J Physiol Lung Cell Mol Physiol 279:L1120–L1128

    PubMed  CAS  Google Scholar 

  135. Trifilieff A et al (2003) PPAR-alpha and -gamma but not -delta agonists inhibit airway inflammation in a murine model of asthma: in vitro evidence for an NF-kappaB-independent effect. Br J Pharmacol 139:163–171

    Article  PubMed  CAS  Google Scholar 

  136. Wyss D, Bonneau O, Trifilieff A (2005) Mast cell involvement in the adenosine mediated airway hyper-reactivity in a murine model of ovalbumin-induced lung inflammation. Br J Pharmacol 145:845–852

    Article  PubMed  CAS  Google Scholar 

  137. Henderson WR Jr et al (1996) The importance of leukotrienes in airway inflammation in a mouse model of asthma. J Exp Med 184:1483–1494

    Article  PubMed  CAS  Google Scholar 

  138. Tomkinson A et al (2001) A murine IL-4 receptor antagonist that inhibits IL-4- and IL-13-induced responses prevents antigen-induced airway eosinophilia and airway hyperresponsiveness. J Immunol 166:5792–5800

    PubMed  CAS  Google Scholar 

  139. Kanehiro A et al (2001) Inhibition of phosphodiesterase 4 attenuates airway hyperresponsiveness and airway inflammation in a model of secondary allergen challenge. Am J Respir Crit Care Med 163:173–184

    PubMed  CAS  Google Scholar 

  140. Penn AL et al (2007) In utero exposure to environmental tobacco smoke potentiates adult responses to allergen in BALB/c mice. Environ Health Perspect 115:548–555

    Article  PubMed  CAS  Google Scholar 

  141. Rouse RL, Boudreaux MJ, Penn AL (2007) In utero environmental tobacco smoke exposure alters gene expression in lungs of adult BALB/c mice. Environ Health Perspect 115:1757–1766

    Article  PubMed  CAS  Google Scholar 

  142. Janssen EM et al (2000) The efficacy of immunotherapy in an experimental murine model of allergic asthma is related to the strength and site of T cell activation during immunotherapy. J Immunol 165:7207–7214

    PubMed  CAS  Google Scholar 

  143. Zuany-Amorim C et al (1998) Requirement for gammadelta T cells in allergic airway inflammation. Science 280:1265–1267

    Article  PubMed  CAS  Google Scholar 

  144. Blyth DI et al (2000) Airway subepithelial fibrosis in a murine model of atopic asthma: suppression by dexamethasone or anti-interleukin-5 antibody. Am J Respir Cell Mol Biol 23:241–246

    PubMed  CAS  Google Scholar 

  145. Nigo YI et al (2006) Regulation of allergic airway inflammation through Toll-like receptor 4-mediated modification of mast cell function. Proc Natl Acad Sci USA 103:2286–2291

    Article  PubMed  CAS  Google Scholar 

  146. Shibata Y (2002) Ras activation in T cells determines the development of antigen-induced airway hyperresponsiveness and eosinophilic inflammation. J Immunol 169:2134–2140

    PubMed  CAS  Google Scholar 

  147. Kamata T (2003) src homology 2 domain-containing tyrosine phosphatase SHP-1 controls the development of allergic airway inflammation. J Clin Invest 111:109–119

    PubMed  CAS  Google Scholar 

  148. Zosky GR et al (2008) Ovalbumin-sensitized mice are good models for airway hyperresponsiveness but not acute physiological responses to allergen inhalation. Clin Exp Allergy 38:829–838

    Article  PubMed  CAS  Google Scholar 

  149. Eidelman DH, Bellofiore S, Martin JG (1988) Late airway responses to antigen challenge in sensitized inbred rats. Am Rev Respir Dis 137:1033–1037

    PubMed  CAS  Google Scholar 

  150. Hylkema MN et al (2002) The strength of the OVA-induced airway inflammation in rats is strain dependent. Clin Exp Immunol 129:390–396

    Article  PubMed  CAS  Google Scholar 

  151. Liu S, Chihara K, Maeyama K (2005) The contribution of mast cells to the late-phase of allergic asthma in rats. Inflamm Res 54:221–228

    Article  PubMed  CAS  Google Scholar 

  152. Pauluhn J, Mohr U (2005) Experimental approaches to evaluate respiratory allergy in animal models. Exp Toxicol Pathol 56:203–234

    Article  PubMed  Google Scholar 

  153. Murphey SM et al (1974) Reagin synthesis in inbred strains of rats. Immunology 27:245–253

    PubMed  CAS  Google Scholar 

  154. Panettieri RA Jr et al (1998) Repeated allergen inhalations induce DNA synthesis in airway smooth muscle and epithelial cells in vivo. Am J Physiol 274:L417–L424

    PubMed  CAS  Google Scholar 

  155. Schneider T et al (1997) Kinetics and quantitation of eosinophil and neutrophil recruitment to allergic lung inflammation in a brown Norway rat model. Am J Respir Cell Mol Biol 17:702–712

    PubMed  CAS  Google Scholar 

  156. Olivenstein R et al (1993) Depletion of OX-8 lymphocytes from the blood and airways using monoclonal antibodies enhances the late airway response in rats. J Clin Invest 92:1477–1482

    Article  PubMed  CAS  Google Scholar 

  157. Sirois J, Bissonnette EY (2001) Alveolar macrophages of allergic resistant and susceptible strains of rats show distinct cytokine profiles. Clin Exp Immunol 126:9–15

    Article  PubMed  CAS  Google Scholar 

  158. Ikawati Z, Nose M, Maeyama K (2001) Do mucosal mast cells contribute to the immediate asthma response? Jpn J Pharmacol 86:38–46

    Article  PubMed  CAS  Google Scholar 

  159. Zhou Y, Zhou X, Wang X (2008) 1,25-Dihydroxyvitamin D3 prevented allergic asthma in a rat model by suppressing the expression of inducible nitric oxide synthase. Allergy Asthma Proc 29:258–267

    Article  PubMed  CAS  Google Scholar 

  160. Han B et al (2011) Adverse effect of nano-silicon dioxide on lung function of rats with or without ovalbumin immunization. PLoS One 6:e17236

    Article  PubMed  CAS  Google Scholar 

  161. Ricciardolo FL et al (2008) The guinea pig as an animal model for asthma. Curr Drug Targets 9:452–465

    Article  PubMed  CAS  Google Scholar 

  162. Nemzek JA, Kim J (2009) Pulmonary inflammation and airway hyperresponsiveness in a mouse model of asthma complicated by acid aspiration. Comp Med 59:321–330

    PubMed  CAS  Google Scholar 

  163. Kim J et al (2004) Prevention and reversal of pulmonary inflammation and airway hyperresponsiveness by dexamethasone treatment in a murine model of asthma induced by house dust. Am J Physiol Lung Cell Mol Physiol 287:503–509

    Article  Google Scholar 

  164. McKinley L et al (2004) Reproducibility of a novel model of murine asthma-like pulmonary inflammation. Clin Exp Immunol 136:224–231

    Article  PubMed  CAS  Google Scholar 

  165. Kim J et al (2011) Herbal medicine treatment reduces inflammation in a murine model of cockroach allergen-induced asthma. Ann Allergy Asthma Immunol 107:154–162

    Article  PubMed  Google Scholar 

  166. Coyle AJ et al (1996) Central role of immunoglobulin (Ig) E in the induction of lung eosinophil infiltration and T helper 2 cell cytokine production: inhibition by a non-anaphylactogenic anti-IgE antibody. J Exp Med 183:1303–1310

    Article  PubMed  CAS  Google Scholar 

  167. Mitchell VL, Van Winkle LS, Gershwin LJ (2011) Environmental tobacco smoke and progesterone alter lung inflammation and mucous metaplasia in a mouse model of allergic airway disease. Clin Rev Allergy Immunol (in press) DOI: 10.1007/s12016-011-8280-0

    Google Scholar 

  168. Campbell EM et al (1998) Temporal role of chemokines in a murine model of cockroach allergen-induced airway hyperreactivity and eosinophilia. J Immunol 161:7047–7053

    PubMed  CAS  Google Scholar 

  169. McGee HS, Edwan JH, Agrawal DK (2010) Flt3-L increases CD4+CD25+Foxp3+ICOS+ cells in the lungs of cockroach-sensitized and -challenged mice. Am J Respir Cell Mol Biol 42:331–340

    Article  PubMed  CAS  Google Scholar 

  170. Arizmendi NG et al (2011) Mucosal allergic sensitization to cockroach allergens is dependent on proteinase activity and proteinase-activated receptor-2 activation. J Immunol 186:3164–3172

    Article  PubMed  CAS  Google Scholar 

  171. Tournoy KG et al (2000) Airway eosinophilia is not a requirement for allergen-induced airway hyperresponsiveness. Clin Exp Allergy 30:79–85

    Article  PubMed  CAS  Google Scholar 

  172. Sarpong SB, Zhang LY, Kleeberger SR (2003) A novel mouse model of experimental asthma. Int Arch Allergy Immunol 132:346–354

    Article  PubMed  CAS  Google Scholar 

  173. Kim J et al (2001) Eotaxin represents the principal eosinophil chemoattractant in a novel murine asthma model induced by house dust containing cockroach allergens. J Immunol 167:2808–2815

    PubMed  CAS  Google Scholar 

  174. Lambert AL et al (2001) TNF-alpha enhanced allergic sensitization to house dust mite in brown Norway rats. Exp Lung Res 27:617–635

    Article  PubMed  CAS  Google Scholar 

  175. De Alba J et al (2010) House dust mite induces direct airway inflammation in vivo: implications for future disease therapy? Eur Respir J 35:1377–1387

    Article  PubMed  Google Scholar 

  176. Dong W, Selgrade MK, Gilmour MI (2003) Systemic administration of Bordetella pertussis enhances pulmonary sensitization to house dust mite in juvenile rats. Toxicol Sci 72:113–121

    Article  PubMed  CAS  Google Scholar 

  177. Jobse BN et al (2009) Evaluation of allergic lung inflammation by computed tomography in a rat model in vivo. Eur Respir J 33:1437–1447

    Article  PubMed  CAS  Google Scholar 

  178. Singh P et al (2003) Phenotypic comparison of allergic airway responses to house dust mite in three rat strains. Am J Physiol Lung Cell Mol Physiol 284:588–598

    Google Scholar 

  179. Hsiue TR et al (1997) Mite-induced allergic airway inflammation in guinea pigs. Int Arch Allergy Immunol 112:295–302

    Article  PubMed  CAS  Google Scholar 

  180. Norris Reinero CR et al (2004) An experimental model of allergic asthma in cats sensitized to house dust mite or bermuda grass allergen. Int Arch Allergy Immunol 135:117–131

    Article  PubMed  CAS  Google Scholar 

  181. Bischof RJ et al (2003) Induction of allergic inflammation in the lungs of sensitized sheep after local challenge with house dust mite. Clin Exp Allergy 33:367–375

    Article  PubMed  CAS  Google Scholar 

  182. Sur S et al (1996) Immunomodulatory effects of IL-12 on allergic lung inflammation depend on timing of doses. J Immunol 157:4173–4180

    PubMed  CAS  Google Scholar 

  183. Yadav UC et al (2009) Inhibition of aldose reductase prevents experimental allergic airway inflammation in mice. PLoS One 4:e6535

    Article  PubMed  CAS  Google Scholar 

  184. Misawa M et al (1987) Strain difference in an allergic asthma model in rats. Jpn J Pharmacol 45:63–68

    Article  PubMed  CAS  Google Scholar 

  185. Shampain MP et al (1982) An animal model of late pulmonary responses to Alternaria challenge. Am Rev Respir Dis 126:493–498

    PubMed  CAS  Google Scholar 

  186. Minshall EM et al (1993) A novel animal model for investigating persistent airway hyperresponsiveness. J Pharmacol Toxicol Methods 30:177–188

    Article  PubMed  CAS  Google Scholar 

  187. Keir SD et al (2011) Airway responsiveness in an allergic rabbit model. J Pharmacol Toxicol Methods 64:187–195

    Article  PubMed  CAS  Google Scholar 

  188. Walters EH et al (2007) Nonpharmacological and pharmacological interventions to prevent or reduce airway remodelling. Eur Respir J 30:574–588

    Article  PubMed  CAS  Google Scholar 

  189. Moise NS et al (1989) Clinical, radiographic, and bronchial cytologic features of cats with bronchial disease: 65 cases (1980–1986). J Am Vet Med Assoc 194:1467–1473

    PubMed  CAS  Google Scholar 

  190. Kirschvink N et al (2007) Functional, inflam­matory and morphological characterisation of a cat model of allergic airway inflammation. Vet J 174:541–553

    Article  PubMed  Google Scholar 

  191. Kirschvink N, Reinhold P (2008) Use of alternative animals as asthma models. Curr Drug Targets 9:470–484

    Article  PubMed  CAS  Google Scholar 

  192. Chapman RW (2008) Canine models of asthma and COPD. Pulm Pharmacol Ther 21:731–742

    Article  PubMed  CAS  Google Scholar 

  193. Woolley MJ et al (1995) Role of airway eosinophils in the development of allergen-induced airway hyperresponsiveness in dogs. Am J Respir Crit Care Med 152:1508–1512

    PubMed  CAS  Google Scholar 

  194. Baldwin F, Becker AB (1993) Bronchoalveolar eosinophilic cells in a canine model of asthma: two distinctive populations. Vet Pathol 30:97–103

    Article  PubMed  CAS  Google Scholar 

  195. Fornhem C et al (1995) Allergen-induced late-phase airways obstruction in the pig: mediator release and eosinophil recruitment. Eur Respir J 8:1100–1109

    Article  PubMed  CAS  Google Scholar 

  196. Abraham WM et al (1983) Characterization of a late phase pulmonary response after antigen challenge in allergic sheep. Am Rev Respir Dis 128:839–844

    PubMed  CAS  Google Scholar 

  197. Hein WR, Griebel PJ (2003) A road less travelled: large animal models in immunological research. Nat Rev Immunol 3:79–84

    Article  PubMed  CAS  Google Scholar 

  198. Abraham WM (2008) Modeling of asthma, COPD and cystic fibrosis in sheep. Pulm Pharmacol Ther 21:743–754

    Article  PubMed  CAS  Google Scholar 

  199. Ware LB (2008) Modeling human lung disease in animals. Am J Physiol Lung Cell Mol Physiol 294:L149–L150

    Article  PubMed  CAS  Google Scholar 

  200. Abraham WM et al (2005) Airway responses to aerosolized brevetoxins in an animal model of asthma. Am J Respir Crit Care Med 171:26–34

    Article  PubMed  Google Scholar 

  201. Kasaian MT et al (2007) Efficacy of IL-13 neutralization in a sheep model of experimental asthma. Am J Respir Cell Mol Biol 36:368–376

    Article  PubMed  CAS  Google Scholar 

  202. Maryanoff BE et al (2010) Dual inhibition of cathepsin G and chymase is effective in animal models of pulmonary inflammation. Am J Respir Crit Care Med 181:247–253

    Article  PubMed  CAS  Google Scholar 

  203. Michel O et al (1996) Severity of asthma is related to endotoxin in house dust. Am J Respir Crit Care Med 154:1641–1646

    PubMed  CAS  Google Scholar 

  204. Yamashita M, Nakayama T (2008) Progress in allergy signal research on mast cells: regulation of allergic airway inflammation through toll-like receptor 4-mediated modification of mast cell function. J Pharmacol Sci 106:332–335

    Article  PubMed  CAS  Google Scholar 

  205. Kulhankova K et al (2009) Early-life co-administration of cockroach allergen and endotoxin augments pulmonary and systemic responses. Clin Exp Allergy 39:1069–1079

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was sponsored by Hungarian Grants OTKA K73044, ETT 03-380/2009, Developing Competitiveness of Universities in the South Transdanubian Region (SROP-4.2.1.B-10/2/KONV-2010-0002). The authors are grateful to Dr. Ágnes Kemény for drawing Fig. 1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zsuzsanna Helyes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Helyes, Z., Hajna, Z. (2012). Endotoxin-Induced Airway Inflammation and Asthma Models. In: Szallasi, A., Bíró, T. (eds) TRP Channels in Drug Discovery. Methods in Pharmacology and Toxicology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-077-9_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-077-9_16

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-076-2

  • Online ISBN: 978-1-62703-077-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics