Skip to main content

TRPV4 and Drug Discovery

  • Protocol
  • First Online:

Part of the book series: Methods in Pharmacology and Toxicology ((MIPT))

Abstract

Transient receptor potential vanilloid 4 (TRPV4) was first identified in 2000 as an osmolarity sensor. Further investigations rapidly revealed this ion channel to be a polymodal receptor with additional activating or modulating stimuli including warm temperatures, endogenous lipids, and phosphorylation. The broad tissue and cell type distribution of TRPV4, coupled with its varied activation profile, lead to a wide variety of physiological roles. These include sheer stress detection in blood vessels, osteoclast differentiation control in bone, along with temperature monitoring in skin keratinocytes and osmolarity sensing in kidneys. Recent work has also implicated TRPV4 mutations in multiple genetic disorders such as brachyolmia and Charcot–Marie–Tooth disease 2C. Characterization of its roles in disease states naturally led to a rising interest in the modulation of TRPV4 for therapeutic purposes. Therapeutic areas of interest are diverse and include several with significant unmet medical needs such as inflammatory and neuropathic pain, bladder dysfunctions, as well as mechanical lung injury. Herein we review the roles of TRPV4 in pathologies and summarize the progress made in identifying small molecule modulators of its activity for target validation and therapeutic purposes.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   159.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   209.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   209.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Damann N et al (2008) TRPs in our senses. Curr Biol 18:R880–R889

    Article  PubMed  CAS  Google Scholar 

  2. Venkatachalam K, Montell C (2007) TRP channels. Annu Rev Biochem 76:387–417

    Article  PubMed  CAS  Google Scholar 

  3. Vennekens R et al (2008) Vanilloid transient receptor potential cation channels: an overview. Curr Pharm Des 14:18–31

    Article  PubMed  CAS  Google Scholar 

  4. Everaerts W et al (2009) The vallinoid transient receptor potential channel Trpv4: from structure to disease. Prog Biophys Mol Biol 103(1):2–17. doi:10.1016/j.pbiomolbio.2009.1010.1002

    Article  PubMed  Google Scholar 

  5. Nilius B et al (2004) TRPV4 calcium entry channel: a paradigm for gating diversity. Am J Physiol Cell Physiol 286:C195–C205

    Article  PubMed  CAS  Google Scholar 

  6. Caterina MJ et al (1997) The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature 389:816–824

    Article  PubMed  CAS  Google Scholar 

  7. Cortright DN, Szallasi A (2004) Biochemical pharmacology of the vanilloid receptor TRPV1. An update. Eur J Biochem 271:1814–1819

    Article  PubMed  CAS  Google Scholar 

  8. Szallasi A et al (2007) The vanilloid receptor TRPV1: 10 years from channel cloning to antagonist proof-of-concept. Nat Rev Drug Discov 6:357–372

    Article  PubMed  CAS  Google Scholar 

  9. Plant TD, Strotmann R (2007) Trpv4. Handb Exp Pharmacol (179):189-205

    Google Scholar 

  10. Arniges M et al (2006) Human TRPV4 channel splice variants revealed a key role of ankyrin domains in multimerization and trafficking. J Biol Chem 281:1580–1586

    Article  PubMed  CAS  Google Scholar 

  11. Shigematsu H et al (2010) A 3.5-nm structure of rat TRPV4 cation channel revealed by zernike phase-contrast cryo-EM. J Biol Chem 285(15):11210–11218

    Article  PubMed  CAS  Google Scholar 

  12. Liedtke W, Friedman JM (2003) Abnormal osmotic regulation in trpv4-/- mice. Proc Natl Acad Sci USA 100:13698–13703

    Article  PubMed  CAS  Google Scholar 

  13. Strotmann R et al (2000) OTRPC4, a nonselective cation channel that confers sensitivity to extracellular osmolarity. Nat Cell Biol 2:695–702

    Article  PubMed  CAS  Google Scholar 

  14. Liedtke W et al (2000) Vanilloid receptor-related osmotically activated channel (VR-OAC), a candidate vertebrate osmoreceptor. Cell 103:525–535

    Article  PubMed  CAS  Google Scholar 

  15. Guler AD et al (2002) Heat-evoked activation of the ion channel, TRPV4. J Neurosci 22:6408–6414

    PubMed  CAS  Google Scholar 

  16. Xu H et al (2003) Regulation of a transient receptor potential (TRP) channel by tyrosine phosphorylation. SRC family kinase-dependent tyrosine phosphorylation of TRPV4 on TYR-253 mediates its response to hypotonic stress. J Biol Chem 278:11520–11527

    Article  PubMed  CAS  Google Scholar 

  17. Fan HC et al (2009) Activation of the TRPV4 ion channel is enhanced by phosphorylation. J Biol Chem 284:27884–27891

    Article  PubMed  CAS  Google Scholar 

  18. Peng H et al (2010) Identification of a Protein Kinase C-dependent phosphorylation site involved in sensitization of TRPV4 channel. Biochem Biophys Res Commun 391:1721–1725

    Article  PubMed  CAS  Google Scholar 

  19. Vriens J et al (2005) Modulation of the Ca2 permeable cation channel TRPV4 by cytochrome P450 epoxygenases in vascular endothelium. Circ Res 97:908–915

    Article  PubMed  CAS  Google Scholar 

  20. Watanabe H et al (2003) Anandamide and arachidonic acid use epoxyeicosatrienoic acids to activate TRPV4 channels. Nature 424:434–438

    Article  PubMed  CAS  Google Scholar 

  21. Chung MK et al (2003) Warm temperatures activate TRPV4 in mouse 308 keratinocytes. J Biol Chem 278:32037–32046

    Article  PubMed  CAS  Google Scholar 

  22. Fernandez-Fernandez JM et al (2002) Maxi K+  channel mediates regulatory volume decrease response in a human bronchial epithelial cell line. Am J Physiol Cell Physiol 283:C1705–C1714

    PubMed  CAS  Google Scholar 

  23. Jia Y et al (2004) Functional TRPV4 channels are expressed in human airway smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 287:L272–L278

    Article  PubMed  CAS  Google Scholar 

  24. Wissenbach U et al (2000) Trp12, a novel Trp related protein from kidney. FEBS Lett 485:127–134

    Article  PubMed  CAS  Google Scholar 

  25. Delany NS et al (2001) Identification and characterization of a novel human vanilloid receptor-like protein, VRL-2. Physiol Genomics 4:165–174

    PubMed  CAS  Google Scholar 

  26. Birder L et al (2007) Activation of urothelial transient receptor potential vanilloid 4 by 4alpha-phorbol 12,13-didecanoate contributes to altered bladder reflexes in the rat. J Pharmacol Exp Ther 323:227–235

    Article  PubMed  CAS  Google Scholar 

  27. Gevaert T et al (2007) Deletion of the transient receptor potential cation channel TRPV4 impairs murine bladder voiding. J Clin Invest 117:3453–3462

    Article  PubMed  CAS  Google Scholar 

  28. Shen J et al (2006) Functional expression of transient receptor potential vanilloid 4 in the mouse cochlea. Neuroreport 17:135–139

    Article  PubMed  CAS  Google Scholar 

  29. Mergler S et al (2011) Characterization of transient receptor potential vanilloid channel 4 (TRPV4) in human corneal endothelial cells. Exp Eye Res 93:710–719

    Article  PubMed  CAS  Google Scholar 

  30. Mizuno A et al (2003) Impaired osmotic sensation in mice lacking TRPV4. Am J Physiol Cell Physiol 285:C96–C101

    PubMed  CAS  Google Scholar 

  31. Shibasaki K et al (2007) Effects of body temperature on neural activity in the hippocampus: regulation of resting membrane potentials by transient receptor potential vanilloid 4. J Neurosci 27:1566–1575

    Article  PubMed  CAS  Google Scholar 

  32. Zhang Y et al (2008) A transient receptor potential vanilloid 4 contributes to mechanical allodynia following chronic compression of dorsal root ganglion in rats. Neurosci Lett 432:222–227

    Article  PubMed  CAS  Google Scholar 

  33. Alessandri-Haber N et al (2003) Hypotonicity induces TRPV4-mediated nociception in rat. Neuron 39:497–511

    Article  PubMed  CAS  Google Scholar 

  34. Alessandri-Haber N et al (2004) Transient receptor potential vanilloid 4 is essential in chemotherapy-induced neuropathic pain in the rat. J Neurosci 24:4444–4452

    Article  PubMed  CAS  Google Scholar 

  35. Wu L et al (2007) Dual role of the TRPV4 channel as a sensor of flow and osmolality in renal epithelial cells. Am J Physiol Renal Physiol 293:F1699–F1713

    Article  PubMed  CAS  Google Scholar 

  36. Watanabe H et al (2002) Heat-evoked activation of TRPV4 channels in a HEK293 cell expression system and in native mouse aorta endothelial cells. J Biol Chem 277:47044–47051

    Article  PubMed  CAS  Google Scholar 

  37. Kohler R et al (2006) Evidence for a functional role of endothelial transient receptor potential V4 in shear stress-induced vasodilatation. Arterioscler Thromb Vasc Biol 26:1495–1502

    Article  PubMed  Google Scholar 

  38. Kumar S et al (2009) WO2006029209. Chem Abstr 144:286221

    Google Scholar 

  39. Masuyama R et al (2008) TRPV4-mediated calcium influx regulates terminal differentiation of osteoclasts. Cell Metab 8:257–265

    Article  PubMed  CAS  Google Scholar 

  40. Mizoguchi F et al (2008) Transient receptor potential vanilloid 4 deficiency suppresses unloading-induced bone loss. J Cell Physiol 216:47–53

    Article  PubMed  CAS  Google Scholar 

  41. Nilius B, Owsianik G (2010) Channelopathies converge on TRPV4. Nat Genet 42:98–100

    Article  PubMed  CAS  Google Scholar 

  42. Willette RN et al (2008) Systemic activation of the transient receptor potential vanilloid subtype 4 channel causes endothelial failure and circulatory collapse: Part 2. J Pharmacol Exp Ther 326:443–452

    Article  PubMed  CAS  Google Scholar 

  43. Thorneloe KS et al (2008) N-((1S)-1-{[4-((2S)-2-{[(2,4-dichlorophenyl)sulfonyl]amino}-3-hydroxypropa noyl)-1-piperazinyl]carbonyl}-3-methylbutyl)-1-benzothiophene-2-carboxamid e (GSK1016790A), a novel and potent transient receptor potential vanilloid 4 channel agonist induces urinary bladder contraction and hyperactivity: Part I. J Pharmacol Exp Ther 326:432–442

    Article  PubMed  CAS  Google Scholar 

  44. Suzuki M et al (2003) Impaired pressure sensation in mice lacking TRPV4. J Biol Chem 278:22664–22668

    Article  PubMed  CAS  Google Scholar 

  45. Rock MJ et al (2008) Gain-of-function mutations in TRPV4 cause autosomal dominant brachyolmia. Nat Genet 40:999–1003

    Article  PubMed  CAS  Google Scholar 

  46. Krakow D et al (2009) Mutations in the gene encoding the calcium-permeable ion channel TRPV4 produce spondylometaphyseal dysplasia, Kozlowski type and metatropic dysplasia. Am J Hum Genet 84:307–315

    Article  PubMed  CAS  Google Scholar 

  47. Everaerts W et al (2010) Inhibition of the cation channel TRPV4 improves bladder function in mice and rats with cyclophosphamide-induced cystitis. Proc Natl Acad Sci USA 107:19084–19089

    Article  PubMed  CAS  Google Scholar 

  48. Liedtke W (2005) TRPV4 as osmosensor: a transgenic approach. Pflugers Arch 451:176–180

    Article  PubMed  CAS  Google Scholar 

  49. Lowry CA et al (2009) That warm fuzzy feeling: brain serotonergic neurons and the regulation of emotion. J Psychopharmacol 23:392–400

    Article  PubMed  CAS  Google Scholar 

  50. Muramatsu S et al (2007) Functional gene screening system identified TRPV4 as a regulator of chondrogenic differentiation. J Biol Chem 282:32158–32167

    Article  PubMed  CAS  Google Scholar 

  51. Gao X et al (2003) Temperature-modulated diversity of TRPV4 channel gating: activation by physical stresses and phorbol ester derivatives through protein kinase C-dependent and -independent pathways. J Biol Chem 278:27129–27137

    Article  PubMed  CAS  Google Scholar 

  52. Vincent F, Duncton MA (2011) TRPV4 agonists and antagonists. Curr Top Med Chem 11:2216–2226

    Article  PubMed  CAS  Google Scholar 

  53. Alessandri-Haber N et al (2009) TRPC1 and TRPC6 channels cooperate with TRPV4 to mediate mechanical hyperalgesia and nociceptor sensitization. J Neurosci 29:6217–6228

    Article  PubMed  CAS  Google Scholar 

  54. Alessandri-Haber N et al (2006) A transient receptor potential vanilloid 4-dependent mechanism of hyperalgesia is engaged by concerted action of inflammatory mediators. J Neurosci 26:3864–3874

    Article  PubMed  CAS  Google Scholar 

  55. Alessandri-Haber N et al (2008) Interaction of transient receptor potential vanilloid 4, integrin, and SRC tyrosine kinase in mechanical hyperalgesia. J Neurosci 28:1046–1057

    Article  PubMed  CAS  Google Scholar 

  56. Alessandri-Haber N et al (2005) TRPV4 mediates pain-related behavior induced by mild hypertonic stimuli in the presence of inflammatory mediator. Pain 118:70–79

    Article  PubMed  CAS  Google Scholar 

  57. Chen X et al (2007) Marked attenuation of inflammatory mediator-induced C-fiber sensitization for mechanical and hypotonic stimuli in TRPV4-/- mice. Mol Pain 3:31

    Article  PubMed  Google Scholar 

  58. Levine JD, Alessandri-Haber N (2007) TRP channels: targets for the relief of pain. Biochim Biophys Acta 1772:989–1003

    Article  PubMed  CAS  Google Scholar 

  59. Vakili C et al (1970) Chemical and osmolar changes of interstitial fluid in acute inflammatory states. Surg Forum 21:227–228

    PubMed  CAS  Google Scholar 

  60. Grant AD et al (2007) Protease-activated receptor 2 sensitizes the transient receptor potential vanilloid 4 ion channel to cause mechanical hyperalgesia in mice. J Physiol 578:715–733

    Article  PubMed  CAS  Google Scholar 

  61. Cenac N et al (2008) Transient receptor potential vanilloid-4 has a major role in visceral hypersensitivity symptoms. Gastroenterology 135:937–946, 946.e1-2

    Article  PubMed  CAS  Google Scholar 

  62. Sipe WE et al (2008) Transient receptor potential vanilloid 4 mediates protease activated receptor 2-induced sensitization of colonic afferent nerves and visceral hyperalgesia. Am J Physiol Gastrointest Liver Physiol 294:G1288–G1298

    Article  PubMed  CAS  Google Scholar 

  63. Brierley SM et al (2008) Selective role for TRPV4 ion channels in visceral sensory pathways. Gastroenterology 134:2059–2069

    Article  PubMed  CAS  Google Scholar 

  64. Auge C et al (2009) Protease-activated receptor-4 (PAR 4): a role as inhibitor of visceral pain and hypersensitivity. Neurogastroenterol Motil 21:1189–e1107

    Article  PubMed  CAS  Google Scholar 

  65. Chen Y et al (2011) Proteinase-activated receptor 2 sensitizes transient receptor potential vanilloid 1, transient receptor potential vanilloid 4, and transient receptor potential ankyrin 1 in paclitaxel-induced neuropathic pain. Neuroscience 193:440–451

    Article  PubMed  CAS  Google Scholar 

  66. Janssen DA et al (2011) The mechanoreceptor TRPV4 is localized in adherence junctions of the human bladder urothelium: a morphological study. J Urol 186:1121–1127

    Article  PubMed  CAS  Google Scholar 

  67. Mochizuki T et al (2009) The TRPV4 cation channel mediates stretch-evoked Ca2+ influx and ATP release in primary urothelial cell cultures. J Biol Chem 284:21257–21264

    Article  PubMed  CAS  Google Scholar 

  68. Skryma R et al (2011) From urgency to frequency: facts and controversies of TRPs in the lower urinary tract. Nat Rev Urol 8:617–630

    Article  PubMed  CAS  Google Scholar 

  69. Aizawa N et al (2012) Effects of TRPV4 cation channel activation on the primary bladder afferent activities of the rat. Neurourol Urodyn 31:148–155

    Article  PubMed  CAS  Google Scholar 

  70. Boudes M et al (2011) TRPV4, new therapeutic target for urinary problems. Med Sci (Paris) 27:232–234

    Article  Google Scholar 

  71. Angelico P, Testa R (2010) TRPV4 as a target for bladder overactivity. F1000 Biol Rep 2

    Google Scholar 

  72. Everaerts W et al (2008) On the origin of bladder sensing: Tr(i)ps in urology. Neurourol Urodyn 27:264–273

    Article  PubMed  CAS  Google Scholar 

  73. Ware LB, Matthay MA (2000) The acute respiratory distress syndrome. N Engl J Med 342:1334–1349

    Article  PubMed  CAS  Google Scholar 

  74. Ware LB, Matthay MA (2005) Clinical practice. Acute pulmonary edema. N Eng J Med 353:2788–2796

    Article  PubMed  CAS  Google Scholar 

  75. Bernard GR et al (1994) The American-European Consensus Conference on ARDS. Definitions, mechanisms, relevant outcomes, and clinical trial coordination. Am J Respir Crit Care Med 149:818–824

    PubMed  CAS  Google Scholar 

  76. Dos Santos CC, Slutsky AS (2000) Invited review: mechanisms of ventilator-induced lung injury: a perspective. J Appl Physiol 89:1645–1655

    PubMed  Google Scholar 

  77. Tiruppathi C et al (2002) Role of Ca2+ signaling in the regulation of endothelial permeability. Vasc Pharmacol 39:173–185

    Article  CAS  Google Scholar 

  78. Hamanaka K et al (2007) TRPV4 initiates the acute calcium-dependent permeability increase during ventilator-induced lung injury in isolated mouse lungs. Am J Physiol Lung Cell Mol Physiol 293:L923–L932

    Article  PubMed  CAS  Google Scholar 

  79. Alvarez DF et al (2006) Transient receptor potential vanilloid 4-mediated disruption of the alveolar septal barrier: a novel mechanism of acute lung injury. Circ Res 99:988–995

    Article  PubMed  CAS  Google Scholar 

  80. Hamanaka K et al (2010) TRPV4 channels augment macrophage activation and ventilator-induced lung injury. Am J Physiol Lung Cell Mol Physiol 299:L353–L362

    Article  PubMed  CAS  Google Scholar 

  81. Eyal FG et al (2007) Reduction in alveolar macrophages attenuates acute ventilator induced lung injury in rats. Intensive Care Med 33:1212–1218

    Article  PubMed  Google Scholar 

  82. Jian MY et al (2008) High vascular pressure-induced lung injury requires P450 epoxygenase-dependent activation of TRPV4. Am J Respir Cell Mol Biol 38:386–392

    Article  PubMed  CAS  Google Scholar 

  83. Watanabe H et al (2002) Activation of TRPV4 channels (hVRL-2/mTRP12) by phorbol derivatives. J Biol Chem 277:13569–13577

    Article  PubMed  CAS  Google Scholar 

  84. Vriens J et al (2007) Determinants of 4 alpha-phorbol sensitivity in transmembrane domains 3 and 4 of the cation channel TRPV4. J Biol Chem 282:12796–12803

    Article  PubMed  CAS  Google Scholar 

  85. Klausen TK et al (2009) Modulation of the transient receptor potential vanilloid channel TRPV4 by 4alpha-phorbol esters: a structure-activity study. J Med Chem 52:2933–2939

    Article  PubMed  CAS  Google Scholar 

  86. Ding XL et al (2010) Involvement of TRPV4-NO-cGMP-PKG pathways in the development of thermal hyperalgesia following chronic compression of the dorsal root ganglion in rats. Behav Brain Res 208:194–201

    Article  PubMed  CAS  Google Scholar 

  87. Gao F, Wang DH (2010) Hypotension induced by activation of the transient receptor potential vanilloid 4 channels: role of Ca2+-activated K+  channels and sensory nerves. J Hypertens 28:102–110

    Article  PubMed  CAS  Google Scholar 

  88. Gao F et al (2009) Salt intake augments hypotensive effects of transient receptor potential vanilloid 4: functional significance and implication. Hypertension 53:228–235

    Article  PubMed  CAS  Google Scholar 

  89. Jeong J et al (2009) In: 238th ACS national meeting, Washington, DC, pp MEDI-392

    Google Scholar 

  90. Casillas LT et al (2009) In: 238th ACS national meeting, Washington, DC, pp MEDI-451

    Google Scholar 

  91. Vincent F et al (2009) Identification and characterization of novel TRPV4 modulators. Biochem Biophys Res Commun 389:490–494

    Article  PubMed  CAS  Google Scholar 

  92. Tsushima H, Mori M (2006) Antidipsogenic effects of a TRPV4 agonist, 4alpha-phorbol 12,13-didecanoate, injected into the cerebroventricle. Am J Physiol Regul Integr Comp Physiol 290:R1736–R1741

    Article  PubMed  CAS  Google Scholar 

  93. Pollard CE et al (2008) Strategies to reduce the risk of drug-induced QT interval prolongation: a pharmaceutical company perspective. Br J Pharmacol 154:1538–1543

    Article  PubMed  CAS  Google Scholar 

  94. Phan MN et al (2009) Functional characterization of TRPV4 as an osmotically sensitive ion channel in porcine articular chondrocytes. Arthritis Rheum 60:3028–3037

    Article  PubMed  CAS  Google Scholar 

  95. Cheung M et al (2009) WO2009146182. Chem Abstr 152:27389

    Google Scholar 

  96. Cheung M et al (2009) WO2009146177. Chem Abstr 152:27388

    Google Scholar 

  97. Cheung M, Eidam HS (2010) WO2010011912. Chem Abstr 152:215581

    Google Scholar 

  98. Cheung M et al (2009) WO2009111680. Chem Abstr 151:359104

    Google Scholar 

  99. Wei Z-L et al (2007) Discovery of a proof-of-concept TRPV4 antagonist. In: Keystone symposia on the transient receptor potential ion channel superfamily, Breckenridge, CO

    Google Scholar 

  100. Tsukamoto S, Sawamura S (2009) JP2009084290. Chem Abstr 150:438732

    Google Scholar 

  101. Reubish D et al (2009) Functional assessment of temperature-gated ion-channel activity using a real-time PCR machine. Biotechniques 47:3–9

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabien Vincent .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Vincent, F., Duncton, M.A.J. (2012). TRPV4 and Drug Discovery. In: Szallasi, A., Bíró, T. (eds) TRP Channels in Drug Discovery. Methods in Pharmacology and Toxicology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-077-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-077-9_13

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-076-2

  • Online ISBN: 978-1-62703-077-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics