Skip to main content

In Vitro Propagation of Fraser Photinia Using Azospirillum-Mediated Root Development

  • Protocol
  • First Online:
Protocols for Micropropagation of Selected Economically-Important Horticultural Plants

Part of the book series: Methods in Molecular Biology ((MIMB,volume 994))

Abstract

Fraser photinia (Photinia × fraseri Dress.) is a woody plant of high ornamental value. The traditional propagation system for photinia is by rooting apical cuttings using highly concentrated auxin treatments. However, photinia micropropagation is an effective alternative to traditional in vivo propagation which is affected by the seasonal supply of cuttings, the long time required to obtain new plants, and the difficulties in rooting some clones.

A protocol for in vitro propagation of fraser photinia using the plant growth-promoting ability of some rhizobacteria is described here. Bacterial inoculation is a new tool in micropropagation protocols that improves plant development in in vitro culture. Shoots culture on a medium containing MS macro- and microelements, Gamborg’s vitamins (BM), N 6-benzyladenine (BA, 11.1 μM), and gibberellic acid (1.3 μM) produce well-established explants. Proliferation on BM medium supplemented with 4.4 μM BA results in four times the number of shoots per initial shoot that develops monthly. Consequently, there is a continuous supply of plant material since shoot production is independent of season. Azospirillum brasilense inoculation, after 49.2 μM indole-3-butyric acid pulse treatment, stimulates early rooting of photinia shoots and produces significant increase in root fresh and dry weights, root surface area, and shoot fresh and dry weights in comparison with controls. Furthermore, inoculated in vitro photinia plants show anatomical and morphological changes that might lead to better adaptation in ex vitro conditions after transplanting, compared with the control plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gilman EF, Watson DG (2006) Photinia x fraseri: fraser photinia. IFAS-ENH 606. http://edis.ifas.ufl.edu/pdffiles/ST/ST44700.pdf

  2. Beeson RC (2000) Putting the speed back in quick-dip auxin application. SNA Res Conf 45:298–302

    Google Scholar 

  3. Dirr MA (1989) Rooting response of Photinia x fraseri Dress ‘Birmingham’ to 25 carrier and carrier plus IBA formulations. J Environ Hortic 7:158–160

    CAS  Google Scholar 

  4. Bonaminio V, Blazich F (1983) Response of fraser’s photinia stem cuttings to selected rooting compounds. J Environ Hortic 1:9–11

    CAS  Google Scholar 

  5. Dirr M (1990) Effects of P-ITB and IBA on the IBA on the rooting response of 19 landscape taxa. J Environ Hortic 8:83–85

    CAS  Google Scholar 

  6. Kane M, Sheehan T, Philman N (1987) A micropropagation protocol using fraser photinia for mutation induction and new cultivar selection. Proc Fla State Hort Soc 100:334–337

    Google Scholar 

  7. Leifert C, Pryce S, Lumsden P, Waites W (1992) Effect of medium acidity on growth and rooting of different plant species growing in vitro. Plant Cell Tissue Organ Cult 30:171–179

    Article  Google Scholar 

  8. Ramírez-Malagón R, Borodanenko A, Barrera-Guerra J, Ochoa-Alejo N (1997) Micropropagation for fraser photinia (Photinia x fraseri). Plant Cell Tissue Organ Cult 48:219–222

    Article  Google Scholar 

  9. Larraburu EE, Carletti SM, Rodríguez Cáceres EA, Llorente BE (2007) Micropropagation of photinia employing rhizobacteria to promote root development. Plant Cell Rep 26:711–717

    Article  PubMed  CAS  Google Scholar 

  10. Larraburu EE, Apóstolo NM, Llorente BE (2010) Anatomy and morphology of photinia (Photinia x fraseri Dress) in vitro plants inoculated with rhizobacteria. Trees 24:635–642

    Article  Google Scholar 

  11. Ziv M, Chen J (2008) The anatomy and morphology of tissue cultured plants. In: George EF, Hall MA, de Klerk GJ (eds) Plant propagation by tissue culture, 3rd edn. Springer, Dordrecht, pp 465–479

    Google Scholar 

  12. Frommel M, Nowak J, Lazzarovitz G (1991) Growth enhancement and developmental modifications of in vitro grown potato (Solanum tuberosum spp. Tuberosum) as affected by a nonfluorescent Pseudomonas sp. Plant Physiol 96:928–936

    Article  PubMed  CAS  Google Scholar 

  13. Carletti SM, Llorente BE, Rodríguez Cáceres EA, Tandecarz J (1998) Jojoba inoculation with Azospirillum brasilense stimulates in vitro root formation. Plant Tissue Cult Biotechnol 4:165–174

    Google Scholar 

  14. Nowak J, Shulaev J (2003) Priming for transplant stress resistance in in vitro propagation. In Vitro Cell Dev Biol Plant 39:107–124

    Google Scholar 

  15. Russo A, Vettori L, Felici C, Fiaschi G, Morini S, Toffanin A (2008) Enhanced micropropagation response and biocontrol effect of Azospirillum brasilense Sp245 on Prunus cerasifera L. clone Mr.S 2/5 plants. J Biotechnol 134:312–319

    Article  PubMed  CAS  Google Scholar 

  16. Okon Y, Vanderleyden J (1997) Root-associated Azospirillum species can stimulate plants. ASM News 63:366–370

    Google Scholar 

  17. Puente ME, Holguin G, Glick BR, Bashan Y (1999) Root-surface colonization of black mangrove seedlings by Azospirillum halopraeferens and Azospirillum brasilense in seawater. FEMS Microbiol Ecol 29:283–292

    Article  CAS  Google Scholar 

  18. Steenhoudt O, Vanderleyden J (2000) Azospirillum, a free-living nitrogen-fixing bacterium closely associated with grasses: genetic, biochemical and ecological aspects. FEMS Microbiol Rev 24:487–506

    Article  PubMed  CAS  Google Scholar 

  19. Bashan Y, Holguin G, de-Bashan LE (2004) Azospirillum-plant relationships: physiological, molecular, agricultural and environmental advances (1997–2003). Can J Microbiol 50:521–577

    Article  PubMed  CAS  Google Scholar 

  20. Murashige T, Skoog F (1962) A revised medium for rapid growth and bio-assay with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  21. Gamborg OL, Miller RA, Ojima K (1968) Nutrient requirements of suspension cultures soybean root cells. Exp Cell Res 50:151–158

    Article  PubMed  CAS  Google Scholar 

  22. Okon Y, Albrecht SL, Burris RH (1977) Methods for growing Spirillum lipoferum and for counting it in pure culture and in association with plants. Appl Environ Microbiol 33:85–88

    PubMed  CAS  Google Scholar 

  23. Rodríguez-Cáceres EA (1982) Improved medium for isolation of Azospirillum spp. Appl Environ Microbiol 44:990–991

    Google Scholar 

  24. Capellades-Queralt M, Beruto AM, Vanderschaeghe A, Debergh PC (1993) Ornamentals. In: Debergh PC, Zimmerman RH (eds) Micropropagation, technology and application. Kluwer Academic, London, pp 215–229

    Google Scholar 

  25. Rout GR, Mohapatra A, Jain SM (2006) Tissue culture of ornamental pot plant: a critical review on present scenario and future prospects. Biotechnol Adv 24:531–560

    Article  PubMed  CAS  Google Scholar 

  26. Dun EA, Ferguson BJ, Beveridge CA (2006) Apical dominance and shoot branching. Divergent opinions or divergent mechanisms? Plant Physiol 142:812–819

    Article  PubMed  CAS  Google Scholar 

  27. Lloyd G, McCown B (1980) Commercially-feasible micropropagation of mountain laurel, Kalmia latifolia, by use of shoot-tip culture. Proc Int Plant Prop Soc 30:421–427

    Google Scholar 

  28. Carley HE, Watson RD (1966) A new gravimetric method for estimating root-surface areas. Soil Sci 102:289–291

    Article  Google Scholar 

  29. Preece JE, Sutter EG (1991) Acclimatization of micropropagated plant to the greenhouse and field. In: Debergh PC, Zimmerman RH (eds) Micropropagation technology and application. Kluwer Academic, London

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Berta E. Llorente .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this protocol

Cite this protocol

Llorente, B.E., Larraburu, E.E. (2012). In Vitro Propagation of Fraser Photinia Using Azospirillum-Mediated Root Development. In: Lambardi, M., Ozudogru, E., Jain, S. (eds) Protocols for Micropropagation of Selected Economically-Important Horticultural Plants. Methods in Molecular Biology, vol 994. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-074-8_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-074-8_19

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-073-1

  • Online ISBN: 978-1-62703-074-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics