Skip to main content

Cytokines as Potential Biomarkers for Parkinson’s Disease: A Multiplex Approach

  • Protocol
  • First Online:
Psychoneuroimmunology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 934))

Abstract

Cytokines, which are immunological messengers facilitating both intra- and inter-system communication, are considered central players in the neuroinflammatory cascades associated with the neurodegenerative process in Parkinson’s disease (PD) and other neurological disorders. They have also been implicated in depression and other cognitive (e.g., memory impairment, dementia) and affective disturbances (e.g., anxiety) that show high co-morbidity with neurodegenerative diseases. As such, cytokines may hold great promise as serological biomarkers in PD, with potential applications ranging from early diagnosis and disease staging, to prognosis, drug discovery, and tracking the response to treatment. Subclassification or risk stratification in PD could be based (among other things) on reliably determined cytokine panel profiles or “signatures” of particular co-morbid disease states or at-risk groups (e.g., PD alone, PD with depression and/or dementia). Researchers and clinicians seeking to describe cytokine variations in health vs. disease will benefit greatly from technologies that allow a high degree of multiplexing and thus permit the simultaneous determination of a large roster of cytokines in single small-volume samples. The need for such highly paralleled assays is underscored by the fact that cytokines do not act in isolation but rather against a backdrop of complementary and antagonistic cytokine effects; ascribing valence to the actions of any one cytokine thus requires specific knowledge about the larger cytokine milieu. This chapter provides a technological overview of the major cytokine multiplex assay platforms before discussing the implications of such tools for biomarker discovery and related applications in PD and its depressive and cognitive co-morbidities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gerlach M et al (2012) Biomarker candidates of neurodegeneration in Parkinson’s disease for the evaluation of disease-modifying therapeutics. J Neural Transm 119(1):39–52. doi:10.1007/s00702-011-0682-x

    Article  PubMed  CAS  Google Scholar 

  2. Morgan JC, Mehta SH, Sethi KD (2010) Biomarkers in Parkinson’s disease. Curr Neurol Neurosci Rep 10:423–430

    Article  PubMed  CAS  Google Scholar 

  3. Tolosa E, Wenning G, Poewe W (2006) The diagnosis of Parkinson’s disease. Lancet Neurol 5:75–86

    Article  PubMed  Google Scholar 

  4. Schlossmacher MG, Mollenhauer B (2010) Biomarker research in Parkinson’s disease: objective measures needed for patient stratification in future cause-directed trials. Biomark Med 4:647–650

    Article  PubMed  CAS  Google Scholar 

  5. Litteljohn D et al (2010) Inflammatory mechanisms of neurodegeneration in toxin-based models of Parkinson’s disease. Parkinsons Dis 2011:713517. doi:10.4061/2011/713517

    PubMed  Google Scholar 

  6. Anisman H, Merali Z, Hayley S (2008) Neurotransmitter, peptide and cytokine processes in relation to depressive disorder: comorbidity between depression and neurodegenerative disorders. Prog Neurobiol 85:1–74

    Article  PubMed  CAS  Google Scholar 

  7. Leng SX et al (2008) ELISA and multiplex technologies for cytokine measurement in inflammation and aging research. J Gerontol A Biol Sci Med Sci 63:879–884

    Article  PubMed  Google Scholar 

  8. Leentjens AF et al (2003) Higher incidence of depression preceding the onset of Parkinson’s disease: a register study. Mov Disord 18:414–418

    Article  PubMed  Google Scholar 

  9. Stefanova E et al (2006) Depression predicts the pattern of cognitive impairment in early Parkinson’s disease. J Neurol Sci 248:131–137

    Article  PubMed  Google Scholar 

  10. McDonald WM, Richard IH, DeLong MR (2003) Prevalence, etiology, and treatment of depression in Parkinson’s disease. Biol Psychiatry 54:363–375

    Article  PubMed  Google Scholar 

  11. Temel Y (2007) Inhibition of 5-HT neuron activity and induction of depressive-like behavior by high-frequency stimulation of the subthalamic nucleus. Proc Natl Acad Sci U S A 104:17087–17092

    Article  PubMed  CAS  Google Scholar 

  12. Frisina PG et al (2008) The effects of antidepressants in Parkinson’s disease: a meta-analysis. Int J Neurosci 118:667–682

    Article  PubMed  CAS  Google Scholar 

  13. Berg D (2008) Biomarkers for the early detection of Parkinson’s and Alzheimer’s disease. Neurodegener Dis 5:133–136

    Article  PubMed  Google Scholar 

  14. Trew M, Suchowersky O (2005) Anxiety and Parkinson’s disease. In: Pfeiffer RF, Ebadi M (eds) Parkinson’s disease. CRC Press, Boca Raton, FL, pp 339–346

    Google Scholar 

  15. Nagatsu T, Sawada M (2005) Inflammatory process in Parkinson’s disease: role for cytokines. Curr Pharm Des 11:999–1016

    Article  PubMed  CAS  Google Scholar 

  16. Mangano EN et al (2012) Interferon-gamma plays a role in paraquat-induced neurodegeneration involving oxidative and proinflammatory pathways. Neurobiol Aging 33(7):1411–1426. doi:10.1016/j.neurobiolaging.2011.02.016

    Article  PubMed  CAS  Google Scholar 

  17. Tansey MG et al (2008) Neuroinflammation in Parkinson’s disease: is there sufficient evidence for mechanism-based interventional therapy? Front Biosci 13:709–717

    Article  PubMed  CAS  Google Scholar 

  18. Reale M et al (2009) Peripheral cytokines profile in Parkinson’s disease. Brain Behav Immun 23:55–63

    Article  PubMed  CAS  Google Scholar 

  19. Chen H et al (2008) Peripheral inflammatory biomarkers and risk of Parkinson’s disease. Am J Epidemiol 167:90–95

    Article  PubMed  Google Scholar 

  20. O’Brien SM et al (2007) Plasma cytokine profiles in depressed patients who fail to respond to selective serotonin reuptake inhibitor therapy. J Psychiatr Res 41:326–331

    Article  PubMed  Google Scholar 

  21. Domenici E et al (2010) Plasma protein biomarkers for depression and schizophrenia by multi analyte profiling of case-control collections. PLoS One 5(2):e9166. doi:10.1371/journal.pone.0009166

    Article  PubMed  Google Scholar 

  22. Alesci S et al (2005) Major depression is associated with significant diurnal elevations in plasma interleukin-6 levels, a shift of its circadian rhythm, and loss of physiological complexity in its secretion: clinical implications. J Clin Endocrinol Metab 90:2522–2530

    Article  PubMed  CAS  Google Scholar 

  23. Dhabhar FS et al (2009) Low serum IL-10 concentrations and loss of regulatory association between IL-6 and IL-10 in adults with major depression. J Psychiatr Res 43:962–969

    Article  PubMed  Google Scholar 

  24. Hannestad J, Dellagioia N, Bloch M (2011) The effect of antidepressant medication treatment on serum levels of inflammatory cytokines: a meta-analysis. Neuropsychopharmacology 36(12):2452–2459. doi:10.1038/npp. 2011.132

    Article  PubMed  CAS  Google Scholar 

  25. Diamond M, Kelly JP, Connor TJ (2006) Antidepressants suppress production of the Th1 cytokine interferon-gamma, independent of monoamine transporter blockade. Eur Neuropsychopharmacol 16:481–490

    Article  PubMed  CAS  Google Scholar 

  26. Raison CL et al (2005) Depression during pegylated interferon-alpha plus ribavirin therapy: prevalence and prediction. J Clin Psychiatry 66:41–48

    Article  PubMed  CAS  Google Scholar 

  27. Kaneko N et al (2006) Suppression of cell proliferation by interferon-alpha through interleukin-1 production in adult rat dentate gyrus. Neuropsychopharmacology 31:2619–2626

    Article  PubMed  CAS  Google Scholar 

  28. Ishikawa J, Ishikawa A, Nakamura S (2007) Interferon-alpha reduces the density of monoaminergic axons in the rat brain. Neuroreport 18:137–140

    Article  PubMed  CAS  Google Scholar 

  29. Anisman H et al (2007) Interferon-alpha effects are exaggerated when administered on a psychosocial stressor backdrop: cytokine, corticosterone and brain monoamine variations. J Neuroimmunol 186:45–53

    Article  PubMed  CAS  Google Scholar 

  30. Litteljohn D et al (2010) Interferon-gamma deficiency modifies the effects of a chronic stressor in mice: implications for psychological pathology. Brain Behav Immun 24:462–473

    Article  PubMed  CAS  Google Scholar 

  31. Ling MM, Ricks C, Lea P (2007) Multiplexing molecular diagnostics and immunoassays using emerging microarray technologies. Expert Rev Mol Diagn 7:87–98

    Article  PubMed  CAS  Google Scholar 

  32. Young HA (2009) Cytokine multiplex analysis. Methods Mol Biol 511:85–105

    Article  PubMed  CAS  Google Scholar 

  33. Shi M, Caudle WM, Zhang J (2009) Biomarker discovery in neurodegenerative diseases: a proteomic approach. Neurobiol Dis 35:157–164

    Article  PubMed  CAS  Google Scholar 

  34. Ellington AA et al (2010) Antibody-based protein multiplex platforms: technical and operational challenges. Clin Chem 56:186–193

    Article  PubMed  CAS  Google Scholar 

  35. Braeckmans K et al (2002) Encoding microcarriers: present and future technologies. Nat Rev Drug Discov 1:447–456

    Article  PubMed  CAS  Google Scholar 

  36. Mangano EN, Hayley S (2009) Inflammatory priming of the substantia nigra influences the impact of later paraquat exposure: neuroimmune sensitization of neurodegeneration. Neurobiol Aging 30:1361–1378

    Article  PubMed  CAS  Google Scholar 

  37. Gibb J et al (2011) Effects of stressors and immune activating agents on peripheral and central cytokines in mouse strains that differ in stressor responsivity. Brain Behav Immun 25:468–482

    Article  PubMed  CAS  Google Scholar 

  38. Luminex Corp (2010) Overcoming the cost and performance limitations of ELISA with xMAP technology. xMAP technology technical note [white paper]. http://www.luminexcorp.com/prod/groups/public/documents/lmnxcorp/308-xmap-vs.-elisa-white-paper.pdf

  39. Sista RS et al (2008) Heterogeneous immunoassays using magnetic beads on a digital microfluidic platform. Lab Chip 8:2188–2196

    Article  PubMed  CAS  Google Scholar 

  40. Hartmann M et al (2009) Protein microarrays for diagnostic assays. Anal Bioanal Chem 393:1407–1416

    Article  PubMed  CAS  Google Scholar 

  41. Luminex Corp (2010) Equivalent analytical performance between the new MAGPIX system and the Luminex 100/200 system. xMAP technology technical note [white paper). http://www.luminexcorp.com/prod/groups/public/documents/lmnxcorp/314-magpix-vs-lx200-white-pape.pdf

  42. Lash GE, Pinto LA (2010) Multiplex cytokine analysis technologies. Expert Rev Vaccines 9:1231–1237

    Article  PubMed  CAS  Google Scholar 

  43. Wu G (2010) Assay development: fundamentals and practices. Wiley, Hoboken, NJ, pp 43–53

    Book  Google Scholar 

  44. Fichorova RN et al (2008) Biological and technical variables affecting immunoassay recovery of cytokines from human serum and simulated vaginal fluid: a multicenter study. Anal Chem 80:4741–4751

    Article  PubMed  CAS  Google Scholar 

  45. Vistnes M, Christensen G, Omland T (2010) Multiple cytokine biomarkers in heart failure. Expert Rev Mol Diagn 10:147–157

    Article  PubMed  CAS  Google Scholar 

  46. Dupont NC et al (2005) Validation and comparison of luminex multiplex cytokine analysis kits with ELISA: determinations of a panel of nine cytokines in clinical sample culture supernatants. J Reprod Immunol 66:175–191

    Article  PubMed  CAS  Google Scholar 

  47. Djoba Siawaya JF et al (2008) An evaluation of commercial fluorescent bead-based luminex cytokine assays. PLoS One 3(7):e2535. doi:10.1371/journal.pone.0002535

    Article  PubMed  Google Scholar 

  48. de Jager W et al (2009) Prerequisites for cytokine measurements in clinical trials with multiplex immunoassays. BMC Immunol 10:52. doi:10.1186/1471-2172-10-52

    Article  PubMed  Google Scholar 

  49. Elshal MF, McCoy JP (2006) Multiplex bead array assays: performance evaluation and comparison of sensitivity to ELISA. Methods 38:317–323

    Article  PubMed  CAS  Google Scholar 

  50. Dossus L et al (2009) Validity of multiplex-based assays for cytokine measurements in serum and plasma from “non-diseased” subjects: comparison with ELISA. J Immunol Methods 350:125–132

    Article  PubMed  CAS  Google Scholar 

  51. Codorean E et al (2010) Correlation of XMAP and ELISA cytokine profiles; development and validation for immunotoxicological studies in vitro. Roum Arch Microbiol Immunol 69:13–19

    PubMed  CAS  Google Scholar 

  52. Dabitao D et al (2011) Multiplex measurement of proinflammatory cytokines in human serum: comparison of the Meso Scale Discovery electrochemiluminescence assay and the Cytometric Bead Array. J Immunol Methods 372(1–2):71–77. doi:10.1016/j.jim.2011.06.033

    Article  PubMed  CAS  Google Scholar 

  53. Fu Q, Zhu J, Van Eyk JE (2010) Comparison of multiplex immunoassay platforms. Clin Chem 56:314–318

    Article  PubMed  CAS  Google Scholar 

  54. Chowdhury F, Williams A, Johnson P (2009) Validation and comparison of two multiplex technologies, Luminex and Mesoscale Discovery, for human cytokine profiling. J Immunol Methods 340:55–64

    Article  PubMed  CAS  Google Scholar 

  55. Hanley BP, Xing L, Cheng RH (2007) Variance in multiplex suspension array assays: microsphere size variation impact. Theor Biol Med Model 4:31. doi:10.1186/1742-4682-4-31

    Article  PubMed  Google Scholar 

  56. Breen EC et al (2011) Multisite comparison of high-sensitivity multiplex cytokine assays. Clin Vaccine Immunol 18:1229–1242

    Article  PubMed  CAS  Google Scholar 

  57. Nechansky A et al (2008) Comparison of the calibration standards of three commercially available multiplex kits for human cytokine measurement to WHO standards reveals striking differences. Biomark Insights 3:227–235

    PubMed  CAS  Google Scholar 

  58. Prabhakar U et al (2004) Validation and comparative analysis of a multiplexed assay for the simultaneous quantitative measurement of Th1/Th2 cytokines in human serum and human peripheral blood mononuclear cell culture supernatants. J Immunol Methods 291:27–38

    Article  PubMed  CAS  Google Scholar 

  59. Master SR, Bierl C, Kricka LJ (2006) Diagnostic challenges for multiplexed protein microarrays. Drug Discov Today 11:1007–1011

    Article  PubMed  CAS  Google Scholar 

  60. Mollenhauer B et al (2011) α-Synuclein and tau concentrations in cerebrospinal fluid of patients presenting with parkinsonism: a cohort study. Lancet Neurol 10:230–240

    Article  PubMed  CAS  Google Scholar 

  61. Peterson AL, Nutt JG (2008) Treatment of Parkinson’s disease with trophic factors. Neurotherapeutics 5:270–280

    Article  PubMed  CAS  Google Scholar 

  62. Yasuda T, Mochizuki H (2010) Use of growth factors for the treatment of Parkinson’s disease. Expert Rev Neurother 10:915–924

    Article  PubMed  CAS  Google Scholar 

  63. Visanji NP et al (2008) PYM50028, a novel, orally active, nonpeptide neurotrophic factor inducer, prevents and reverses neuronal damage induced by MPP+ in mesencephalic neurons and by MPTP in a mouse model of Parkinson’s disease. FASEB J 22:2488–2497

    Article  PubMed  CAS  Google Scholar 

  64. Scully P et al (2010) Plasma cytokine profiles in females with irritable Bowel syndrome and extra-intestinal co-morbidity. Am J Gastroenterol 105:2235–2243

    Article  PubMed  CAS  Google Scholar 

  65. Ohman L, Simrén M (2010) Pathogenesis of IBS: role of inflammation, immunity and neuroimmune interactions. Nat Rev Gastroenterol Hepatol 7:163–173

    Article  PubMed  Google Scholar 

  66. Folks DG (2004) The interface of psychiatry and irritable Bowel syndrome. Curr Psychiatry Rep 6:210–215

    Article  PubMed  Google Scholar 

  67. Eller M, Williams DR (2009) Biological fluid biomarkers in neurodegenerative parkinsonism. Nat Rev Neurol 5:561–570

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by funds from the Canadian Institutes of Health Research (D.L. and S.H.) and Parkinson Society Canada (S.H.). S.H. is a Canada Research Chair in Neuroscience. Thanks to Neville Ko for creating the schematic in Fig. 2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shawn Hayley .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Litteljohn, D., Hayley, S. (2012). Cytokines as Potential Biomarkers for Parkinson’s Disease: A Multiplex Approach. In: Yan, Q. (eds) Psychoneuroimmunology. Methods in Molecular Biology, vol 934. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-071-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-071-7_7

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-070-0

  • Online ISBN: 978-1-62703-071-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics