Skip to main content

The GK Rat: A Prototype for the Study of Non-overweight Type 2 Diabetes

  • Protocol
  • First Online:
Book cover Animal Models in Diabetes Research

Part of the book series: Methods in Molecular Biology ((MIMB,volume 933))

Abstract

Type 2 diabetes mellitus (T2D) arises when the endocrine pancreas fails to secrete sufficient insulin to cope with the metabolic demand because of β-cell secretory dysfunction and/or decreased β-cell mass. Defining the nature of the pancreatic islet defects present in T2D has been difficult, in part because human islets are inaccessible for direct study. This review is aimed to illustrate to what extent the Goto Kakizaki rat, one of the best characterized animal models of spontaneous T2D, has proved to be a valuable tool offering sufficient commonalities to study this aspect. A comprehensive compendium of the multiple functional GK abnormalities so far identified is proposed in this perspective, together with their time-course and interactions. A special focus is given toward the pathogenesis of defective β-cell number and function in the GK model. It is proposed that the development of T2D in the GK model results from the complex interaction of multiple events: (1) several susceptibility loci containing genes responsible for some diabetic traits; (2) gestational metabolic impairment inducing an epigenetic programming of the offspring pancreas and the major insulin target tissues; and (3) environmentally induced loss of β-cell differentiation due to chronic exposure to hyperglycemia/hyperlipidemia, inflammation, and oxidative stress.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Östenson CG (2001) The Goto-Kakizaki rat. In: Sima AAF, Shafrir E (eds) Animal models of diabetes: a primer. Harwood Academic, Amsterdam, pp 197–211

    Google Scholar 

  2. Portha B, Giroix MH, Serradas P et al (2001) Beta-cell function and viability in the spontaneously diabetic GK rat. Information from the GK/Par colony. Diabetes 50(suppl 1):A89–A93

    Google Scholar 

  3. Portha B (2005) Programmed disorders of beta-cell development and function as one cause for type 2 diabetes? The GK rat paradigm. Diabetes Metab Res Rev 21:495–504

    PubMed  CAS  Google Scholar 

  4. Portha B, Lacraz G, Dolz M et al (2007) Issues surrounding beta-cells and their roles in type 2 diabetes. What tell us the GK rat model. Expert Rev Endocrinol Metab 2:785–795

    CAS  Google Scholar 

  5. Goto Y, Kakizaki M, Masaki N (1975) Spontaneous diabetes produced by selective breeding of normal Wistar rats. Proc Jpn Acad 51:80–85

    Google Scholar 

  6. Goto Y, Suzuki KI, Sasaki M et al (1988) GK rat as a model of nonobese, noninsulindependent diabetes. Selective breeding over 35 generations. In: Shafrir E, Renold AE (eds) Lessons from animal diabetes. Libbey, London, pp 301–303

    Google Scholar 

  7. Suzuki KI, Goto Y, Toyota T (1992) Spontaneously diabetic GK (Goto-Kakizaki) rats. In: Shafrir E (ed) Lessons from animal diabetes. Smith-Gordon, London, pp 107–116

    Google Scholar 

  8. Portha B, Serradas P, Bailbé D et al (1991) β-Cell insensitivity to glucose in the GK rat, a spontaneous nonobese model for type II diabetes. Dissociation between reductions in glucose transport and glucose-stimulated insulin secretion. Diabetes 40:486–491

    PubMed  CAS  Google Scholar 

  9. Ohneda M, Johnson JH, Inman LR et al (1993) GLUT2 expression and function in β-cells of GK rats with NIDDM. Diabetes 42:1065–1072

    PubMed  CAS  Google Scholar 

  10. Lewis BM, Ismail IS, Issa B et al (1996) Desensitisation of somatostatin, TRH and GHRH responses to glucose in the diabetic Goto-Kakizaki rat hypothalamus. J Endocrinol 151:13–17

    PubMed  CAS  Google Scholar 

  11. Duarte AI, Santos MS, Seiça R et al (2004) Oxidative stress affects synaptosomal γ- aminobutyric acid and glutamate transport in diabetic rats. The role of insulin. Diabetes 53:2110–2116

    PubMed  CAS  Google Scholar 

  12. Villar-Palasi C, Farese RV (1994) Impaired skeletal muscle glycogen synthase activation by insulin in the Goto-Kakizaki (GK) rat. Diabetologia 37:885–891

    PubMed  CAS  Google Scholar 

  13. Bitar MS, Wahid S, Mustafa S et al (2005) Nitric oxide dynamics and endothelial dysfunction in type II model of genetic diabetes. Eur J Pharmacol 511:53–64

    PubMed  CAS  Google Scholar 

  14. Ye ZQ, Niu S, Yu Y et al (2010) Analyses of copy number variation of GK rat reveal new putative type 2 diabetes susceptibility loci. PLoS One 5:e14077

    PubMed  Google Scholar 

  15. Hughes SJ, Suzuki K, Goto Y (1994) The role of islet secretory function in the development of diabetes in the GK Wistar rat. Diabetologia 37:863–870

    PubMed  CAS  Google Scholar 

  16. Metz SA, Meredith M, Vadakekalam J et al (1999) A defect late in stimulus secretion coupling impairs insulin secretion in Goto–Kakizaki diabetic rats. Diabetes 48:1754–1762

    PubMed  CAS  Google Scholar 

  17. Wallis RH, Wallace KJ, Collins SC et al (2004) Enhanced insulin secretion and cholesterol metabolism in congenic strains of the spontaneously diabetic (type 2) Goto-Kakizaki rat are controlled by independent genetic loci in rat chromosome 8. Diabetologia 47:1096–1106

    PubMed  CAS  Google Scholar 

  18. Sener A, Ladrière L, Malaisse WJ et al (2001) Assessment by D-[(3)H]mannoheptulose uptake of B-cell density in isolated pancreatic islets from Goto-Kakizaki rats. Int J Mol Med 8:177–180

    PubMed  CAS  Google Scholar 

  19. Portha B, Lacraz G, Kergoat M et al (2009) The GK rat beta-cell: a prototype for the diseased human beta-cell in type 2 diabetes? Mol Cell Endocrinol 297:73–85

    PubMed  CAS  Google Scholar 

  20. Guenifi A, Abdel-Halim SM, Höög A et al (1995) Preserved beta-cell density in the endocrine pancreas of young, spontaneously diabetic Goto-Kakizaki (GK) rats. Pancreas 10:148–153

    PubMed  CAS  Google Scholar 

  21. Abdel-Halim SM, Guenifi A, Efendic S et al (1993) Both somatostatin and insulin responses to glucose are impaired in the perfused pancreas of the spontaneously non-insulin dependent diabetic GK (Goto-Kakizaki) rat. Acta Physiol Scand 1482:19–26

    Google Scholar 

  22. Movassat J, Saulnier C, Serradas P et al (1997) Impaired development of pancreatic beta-cell mass is a primary event during the progression to diabetes in the GK rat. Diabetologia 40:916–925

    PubMed  CAS  Google Scholar 

  23. Guest PC, Abdel-Halim SM, Gross DJ et al (2002) Proinsulin processing in the diabetic Goto–Kakizaki rat. J Endocrinol 175:637–647

    PubMed  CAS  Google Scholar 

  24. Homo-Delarche F, Calderari S, Irminger JC et al (2006) Islet Inflammation and fibrosis in a spontaneous model of type 2 diabetes, the GK rat. Diabetes 55:1625–1633

    PubMed  CAS  Google Scholar 

  25. Ehses JA, Perren A, Eppler E et al (2007) Increased number of islet-associated macrophages in type 2 diabetes. Diabetes 562:356–370

    Google Scholar 

  26. Ehses JA, Calderari S, Irminger JC et al (2007) Islet Inflammation in type 2 diabetes (T2D): from endothelial to beta-cell dysfunction. Curr Immunol Rev 3:216–232

    CAS  Google Scholar 

  27. Giroix MH, Irminger JC, Lacraz G et al (2011) Hypercholesterolaemia, signs of islet microangiopathy and altered angiogenesis precede onset of type 2 diabetes in the Goto–Kakizaki (GK) rat. Diabetologia 54:2451–2462

    PubMed  CAS  Google Scholar 

  28. Ghanaat-Pour H, Huang Z, Lehtihet M et al (2007) Global expression profiling of glucose-regulated genes in pancreatic islets of spontaneously diabetic Goto-Kakizaki rats. J Mol Endocrinol 39:135–150

    PubMed  CAS  Google Scholar 

  29. Atef N, Portha B, Penicaud L (1994) Changes in islet blood flow in rats with NIDDM. Diabetologia 37:677–680

    PubMed  CAS  Google Scholar 

  30. Svensson AM, Östenson CG, Sandler S et al (1994) Inhibition of nitric oxide synthase by NG-nitro-L-arginine causes a preferential decrease in pancreatic islet blood flow in normal rats and spontaneously diabetic GK rats. Endocrinology 135:849–853

    PubMed  CAS  Google Scholar 

  31. Svensson AM, Östenson CG, Jansson L (2000) Age-induced changes in pancreatic islet blood flow: evidence for an impaired regulation in diabetic GK rats. Am J Physiol Endocrinol Metab 279:E1139–E1144

    PubMed  CAS  Google Scholar 

  32. Carlsson PO, Jansson L, Östenson CG et al (1997) Islet capillary blood pressure increase mediated by hyperglycemia in NIDDM GK rats. Diabetes 46:947–952

    PubMed  CAS  Google Scholar 

  33. Lacraz G, Figeac F, Movassat J et al (2009) Diabetic rat beta-cells can achieve self-protection against oxidative stress through an adaptive up-regulation of their antioxidant defenses. PLoS One 4(8):e6500

    PubMed  Google Scholar 

  34. Ihara Y, Toyokuni S, Uchida K et al (1999) Hyperglycemia causes oxidative stress in pancreatic beta-cells of GK rats, a model of type 2 diabetes. Diabetes 48:927–932

    PubMed  CAS  Google Scholar 

  35. Movassat J, Portha B (1999) Beta-cell growth in the neonatal Goto-Kakizaki rat and regeneration after treatment with streptozotocin at birth. Diabetologia 42:1098–1106

    PubMed  CAS  Google Scholar 

  36. Miralles F, Portha B (2001) Early development of beta-cells is impaired in the GK rat model of type 2 diabetes. Diabetes 50(suppl 1):84–88

    Google Scholar 

  37. Plachot C, Movassat J, Portha B (2001) Impaired beta-cell regeneration after partial pancreatectomy in the adult Goto-Kakizaki rat, a spontaneous model of type 2 diabetes. Histochem Cell Biol 116:131–139

    PubMed  CAS  Google Scholar 

  38. Calderari S, Gangnerau MN, Thibault M et al (2007) Defective IGF-2 and IGFR1 protein production in embryonic pancreas precedes beta cell mass anomaly in Goto-Kakizaki rat model of type 2 diabetes. Diabetologia 50:1463–1471

    PubMed  CAS  Google Scholar 

  39. Giroix MH, Saulnier C, Portha B (1999) Decreased pancreatic islet response to L-leucine in the spontaneously diabetic GK rat: enzymatic, metabolic and secretory data. Diabetologia 42:965–977

    PubMed  CAS  Google Scholar 

  40. Momose K, Nunomiya S, Nakata M et al (2006) Immunohistochemical and electron-microscopic observation of beta-cells in pancreatic islets of spontaneously diabetic Goto-Kakizaki rats. Med Mol Morphol 39:146–153

    PubMed  Google Scholar 

  41. Koyama M, Wada R, Sakuraba H et al (1998) Accelerated loss of islet beta-cells in sucrose-fed Goto-Kakizaki rats, a genetic model of non-insulin-dependent diabetes mellitus. Am J Pathol 153:537–545

    PubMed  CAS  Google Scholar 

  42. Goda T, Suruga K, Komori A et al (2007) Effects of miglitol, an alpha-glucosidase inhibitor, on glycaemic status and histopathological changes in islets in non-obese, non-insulin-dependent diabetic Goto-Kakizaki rats. Br J Nutr 98:702–710

    PubMed  CAS  Google Scholar 

  43. Seiça R, Martins MJ, Pessa PB et al (2003) Morphological changes of islet of Langerhans in an animal model of type 2 diabetes. Acta Med Port 16:381–388

    PubMed  Google Scholar 

  44. Keno Y, Tokunaga K, Fujioka S et al (1994) Marked reduction of pancreatic insulin content in male ventromedial hypothalamic-lesioned spontaneously non-insulin-dependent diabetic (Goto-Kakizaki) rats. Metabolism 43:32–37

    PubMed  CAS  Google Scholar 

  45. Östenson CG, Khan A, Abdel-Halim SM et al (1993) Abnormal insulin secretion and glucose metabolism in pancreatic islets from the spontaneously diabetic GK rat. Diabetologia 36:3–8

    PubMed  Google Scholar 

  46. Suzuki N, Aizawa T, Asanuma N et al (1997) An early insulin intervention accelerates pancreatic β-cell dysfunction in young Goto-Kakizaki rats, a model of naturally occurring noninsulin-dependent diabetes. Endocrinology 138:1106–1110

    PubMed  CAS  Google Scholar 

  47. Salehi A, Henningsson R, Mosén H et al (1999) Dysfunction of the islet lysosomal system conveys impairment of glucose-induced insulin release in the diabetic GK rat. Endocrinology 140:3045–3053

    PubMed  CAS  Google Scholar 

  48. Giroix MH, Vesco L, Portha B (1993) Functional and metabolic perturbations in isolated pancreatic islets from the GK rat, a genetic model of non-insulin dependent diabetes. Endocrinology 132:815–822

    PubMed  CAS  Google Scholar 

  49. Nagamatsu S, Nakamichi Y, Yamamura C et al (1999) Decreased expression of t-SNARE, syntaxin 1, and SNAP-25 in pancreatic beta-cells is involved in impaired insulin secretion from diabetic GK rat islets: restoration of decreased t-SNARE proteins improves impaired insulin secretion. Diabetes 48:2367–2373

    PubMed  CAS  Google Scholar 

  50. Gauguier D, Froguel P, Parent V et al (1996) Chromosomal mapping of genetic loci associated with non-insulin dependent diabetes in the GK rat. Nat Genet 12:38–43

    PubMed  CAS  Google Scholar 

  51. Galli J, Li LS, Glaser A et al (1996) Genetic analysis of non-insulin dependent diabetes mellitus in the GK rat. Nat Genet 12:31–37

    PubMed  CAS  Google Scholar 

  52. Gauguier D, Nelson I, Bernard C et al (1994) Higher maternal than paternal inheritance of diabetes in GK rats. Diabetes 43:220–224

    PubMed  CAS  Google Scholar 

  53. Kimura K, Toyota T, Kakizaki M et al (1982) Impaired insulin secretion in the spontaneous diabetes rats. Tohoku J Exp Med 137:453–459

    PubMed  CAS  Google Scholar 

  54. Abdel-Halim SM, Guenifi A, Khan A et al (1996) Impaired coupling of glucose signal to the exocytotic machinery in diabetic GK rats; a defect ameliorated by cAMP. Diabetes 45:934–940

    PubMed  Google Scholar 

  55. Giroix MH, Sener A, Portha B et al (1993) Preferential alteration of oxidative relative to total glycolysis in pancreatic islets of two rats models of inherited or acquired type 2 (non-insulin dependent) diabetes mellitus. Diabetologia 36:305–309

    PubMed  CAS  Google Scholar 

  56. Östenson CG, Abdel-Halim SM, Rasschaert J et al (1993) Deficient activity of FAD-linked glycerophosphate dehydrogenase in islets of GK rats. Diabetologia 36:722–728

    PubMed  Google Scholar 

  57. Tsuura Y, Ishida H, Okamoto Y et al (1993) Glucose sensitivity of ATP-sensitive K+ channels is impaired in beta-cells of the GK rat A new genetic model of NIDDM. Diabetes 42:1446–1453

    PubMed  CAS  Google Scholar 

  58. Giroix MH, Sener A, Bailbé D et al (1993) Metabolic, ionic and secretory response to D-glucose in islets from rats with acquired or inherited non-insulin dependent diabetes. Biochem Med Metab Biol 50:301–321

    PubMed  CAS  Google Scholar 

  59. Ling ZC, Efendic S, Wibom R et al (1998) Glucose metabolism in Goto–Kakizaki rat islets. Endocrinology 139:2670–2675

    PubMed  CAS  Google Scholar 

  60. Ling ZC, Hong-Lie C, Östenson CG et al (2001) Hyperglycemia contributes to impaired insulin response in GK rat islets. Diabetes 50(suppl 1):108–112

    CAS  Google Scholar 

  61. Fradet M, Giroix MH, Bailbé D et al (2008) Glucokinase activators modulate glucose metabolism and glucose-stimulated insulin secretion in islets from diabetic GK/Par rats (Abstract). Diabetologia 51(suppl 1):A198–A199

    Google Scholar 

  62. Koyama M, Wada R, Mizukami H et al (2000) Inhibition of progressive reduction of islet beta-cell mass in spontaneously diabetic Goto-Kakizaki rats by alpha-glucosidase inhibitor. Metabolism 49:347–352

    PubMed  CAS  Google Scholar 

  63. Hughes SJ, Faehling M, Thorneley CW et al (1998) Electrophysiological and metabolic characterization of single beta-cells and islets from diabetic GK rats. Diabetes 47:73–81

    PubMed  CAS  Google Scholar 

  64. Zhou YP, Östenson CG, Ling ZC et al (1995) Deficiency of pyruvate dehydrogenase activity in pancreatic islets of diabetic GK rats. Endocrinology 136:3546–3551

    PubMed  CAS  Google Scholar 

  65. MacDonald MJ, Efendic S, Östenson CG (1996) Normalization by insulin treatment of low mitochondrial glycerol phosphate dehydrogenase and pyruvate carboxylase in pancreatic islets of the GK rat. Diabetes 45:886–890

    PubMed  Google Scholar 

  66. Serradas P, Giroix MH, Saulnier C et al (1995) Mitochondrial deoxyribonucleic acid content is specifically decreased in adult, but not fetal, pancreatic islets of the Goto-Kakizaki rat, a genetic model of non insulin-dependent diabetes. Endocrinology 136:5623–5631

    PubMed  CAS  Google Scholar 

  67. Marie JC, Bailbé D, Gylfe E et al (2001) Defective glucose-dependent cytosolic Ca2+ handling in islets of GK and nSTZ rat models of type2 diabetes. J Endocrinol 169:169–176

    PubMed  CAS  Google Scholar 

  68. Dolz M, Bailbé D, Giroix MH et al (2005) Restitution of defective glucose-stimulated insulin secretion in diabetic GK rat by acetylcholine uncovers paradoxical stimulatory effect of beta cell muscarinic receptor activation on cAMP production. Diabetes 54:3229–3237

    PubMed  CAS  Google Scholar 

  69. Shang W, Yasuda K, Takahashi A et al (2002) Effect of high dietary fat on insulin secretion in genetically diabetic Goto-Kakizaki rats. Pancreas 25:393–399

    PubMed  Google Scholar 

  70. Briaud I, Kelpe CL, Johnson LM et al (2002) Differential effects of hyperlipidemia on insulin secretion in islets of Langerhans from hyperglycemic versus normoglycemic rats. Diabetes 51:662–668

    PubMed  CAS  Google Scholar 

  71. Dolz M, Movassat J, Bailbé D et al (2011) cAMP-secretion coupling is impaired in diabetic GK/Par rat β-cells. A defect counteracted by GLP-1. Am J Physiol Endocrinol Metab 301:E797–E806

    PubMed  CAS  Google Scholar 

  72. Váradi A, Molnár E, Östenson CG et al (1996) Isoforms of endoplasmic reticulum Ca2+-ATPase are differentially expressed in normal and diabetic islets of Langerhans. Biochem J 319:521–527

    PubMed  Google Scholar 

  73. Abdel-Halim SM, Guenifi A, He B et al (1998) Mutations in the promoter of adenylyl cyclase (AC)-III gene, overexpression of AC-III mRNA, and enhanced cAMP generation in islets from the spontaneously diabetic GK rat model of type 2 diabetes. Diabetes 47:498–504

    PubMed  CAS  Google Scholar 

  74. Guenifi A, Simonsson E, Karlsson S et al (2001) Carbachol restores insulin release in diabetic GK rat islets by mechanisms largely involving hydrolysis of diacylglycerol and direct interaction with the exocytotic machinery. Pancreas 22:164–171

    PubMed  CAS  Google Scholar 

  75. Mosén H, Östenson CG, Lundquist I et al (2008) Impaired glucose-stimulated insulin secretion in the rat is associated with abnormalities in islet nitric oxide production. Regul Pept 151:139–146

    PubMed  Google Scholar 

  76. Salehi A, Meidute AS, Jimenez-Feltstrom J et al (2008) Excessive islet NO generation in type 2 diabetic GK rats coincides with abnormal hormone secretion and is counteracted by GLP1. PLoS One 3(5):e2165

    PubMed  Google Scholar 

  77. Mosén H, Salehi A, Alm P et al (2005) Defective glucose-stimulated insulin release in the diabetic Goto-Kakizaki (GK) rat coincides with reduced activity of the islet carbon monoxide signaling pathway. Endocrinology 146:1553–1558

    PubMed  Google Scholar 

  78. Yan J, Feng Z, Liu J et al (2012) Enhanced autophagy plays a cardinal role in mitochondrial dysfunction in type 2 diabetic Goto-Kakizaki (GK) rats: ameliorating effects of (−)-epigallocatechin-3-gallate. J Nutr Biochem. 23(7):716–724

    Google Scholar 

  79. Warwar N, Efendic S, Östenson CG et al (2006) Dynamics of glucose-induced localization of PKC isoenzymes in pancreatic beta-cells. Diabetes-related changes in the GK rat. Diabetes 55:590–599

    PubMed  CAS  Google Scholar 

  80. Rose T, Efendic S, Rupnik M (2007) Ca2+-secretion coupling is impaired in diabetic Goto Kakizaki rats. J Gen Physiol 129:493–508

    PubMed  CAS  Google Scholar 

  81. Abella A, Marti L, Camps M et al (2003) Semicarbazide-sensitive amine oxidase/vascular adhesion protein-1 activity exerts an antidiabetic action in Goto–Kakizaki rats. Diabetes 52:1004–1013

    PubMed  CAS  Google Scholar 

  82. Chen J, Östenson CG (2005) Inhibition of protein-tyrosine phosphatases stimulates insulin secretion in pancreatic islets of diabetic Goto–Kakizaki rats. Pancreas 30:314–317

    PubMed  CAS  Google Scholar 

  83. Östenson CG, Sandberg-Nordqvist AC, Chen J et al (2002) Overexpression of protein tyrosine phosphatase PTP sigma is linked to impaired glucose- induced insulin secretion in hereditary diabetic Goto–Kakizaki rats. Biochem Biophys Res Commun 291:945–950

    PubMed  Google Scholar 

  84. Kowluru A (2003) Defective protein histidine phosphorylation in islets from the Goto– Kakizaki diabetic rat. Am J Physiol 285:E498–E503

    CAS  Google Scholar 

  85. Leckström A, Östenson CG, Efendic S et al (1996) Increased storage and secretion of islet amyloid polypeptide relative to insulin in the spontaneously diabetic GK rat. Pancreas 13:259–267

    PubMed  Google Scholar 

  86. Weng HB, Gu Q, Liu M et al (2008) Increased secretion and expression of amylin in spontaneously diabetic Goto-Kakizaki rats treated with rhGLP1(7–36). Acta Pharmacol Sin 29:573–579

    PubMed  CAS  Google Scholar 

  87. Okamoto Y, Ishida H, Tsuura Y et al (1995) Hyperresponse in calcium-induced insulin release from electrically permeabilized pancreatic islets of diabetic GK rats and its defective augmentation by glucose. Diabetologia 38:772–778

    PubMed  CAS  Google Scholar 

  88. Gaisano HY, Östenson CG, Sheu L et al (2002) Abnormal expression of pancreatic islet exocytotic soluble N-ethylmaleimide-sensitive factor attachment protein receptors in Goto-Kakizaki rats is partially restored by phlorizin treatment and accentuated by high glucose treatment. Endocrinology 143:4218–4226

    PubMed  CAS  Google Scholar 

  89. Zhang W, Khan A, Östenson CG et al (2002) Down-regulated expression of exocytotic proteins in pancreatic islets of diabetic GK rats. Biochem Biophys Res Commun 291:1038–1044

    PubMed  CAS  Google Scholar 

  90. Ohara-Imaizumi M, Nishiwaki C, Kikuta T et al (2004) TIRF imaging of docking and fusion of single insulin granule motion in primary rat pancreatic beta cells: different behaviour of granule motion between normal and Goto–Kakizaki diabetic rat beta-cells. Biochem J 381:13–18

    PubMed  CAS  Google Scholar 

  91. Movassat J, Deybach C, Bailbé D et al (2005) Involvement of cortical actin cytoskeleton in the defective insulin secretion in Goto-Kakizaki rats (Abstract). Diabetes 54:A1

    Google Scholar 

  92. Kaiser N, Nesher R, Oprescu A et al (2005) Characterization of the action of S21403 (mitiglinide) on insulin secretion and biosynthesis in normal and diabetic beta-cells. Br J Pharmacol 146:872–881

    PubMed  CAS  Google Scholar 

  93. Katayama N, Hughes SJ, Persaud SJ et al (1995) Insulin secretion from islets of GK rats is not impaired after energy generating steps. Mol Cell Endocrinol 111:125–128

    PubMed  CAS  Google Scholar 

  94. Bisbis S, Bailbe D, Tormo MA et al (1993) Insulin resistance in the GK rat: decreased receptor number but normal kinase activity in liver. Am J Physiol 265(5):E807–E813

    PubMed  CAS  Google Scholar 

  95. Picarel-Blanchot F, Berthelier C, Bailbé D et al (1996) Impaired insulin secretion and excessive hepatic glucose production are both early events in the diabetic GK rat. Am J Physiol 271(4):E755–E762

    PubMed  CAS  Google Scholar 

  96. Berthelier C, Kergoat M, Portha B (1997) Lack of deterioration of insulin action with aging in the GK rat: a contrasted adaptation as compared with nondiabetic rats. Metabolism 46:890–896

    PubMed  CAS  Google Scholar 

  97. Movassat J, Bailbé D, Lubrano-Berthelier C et al (2008) Follow-up of GK rats during prediabetes highlights increased insulin action and fat deposition despite low insulin secretion. Am J Physiol Endocrinol Metab 294(1):E168–E175

    PubMed  CAS  Google Scholar 

  98. Beauquis J, Homo-Delarche F, Giroix MH et al (2010) Hippocampal neurovascular and hypothalamic pituitary adrenal axis alterations in spontaneously type 2 diabetic GK rats. Exp Neurol 222:125–134

    PubMed  CAS  Google Scholar 

  99. Almon RR, DuBois DC, Lai W et al (2009) Gene expression analysis of hepatic roles in cause and development of diabetes in Goto-Kakizaki rats. J Endocrinol 200(3):331–346

    PubMed  CAS  Google Scholar 

  100. Nolte LA, Abdel-Halim SM, Martin IK et al (1995) Development of decreased insulin-induced glucose transport in skeletal muscle of glucose-intolerant hybrids of diabetic GK rats. Clin Sci (Lond) 88(3):301–306

    CAS  Google Scholar 

  101. Krook A, Kawano Y, Song XM et al (1997) Improved glucose tolerance restores insulin-stimulated Akt kinase activity and glucose transport in skeletal muscle from diabetic Goto-Kakizaki rats. Diabetes 46(12):2110–2114

    PubMed  CAS  Google Scholar 

  102. Steiler TL, Galuska D, Leng Y et al (2003) Effect of hyperglycemia on signal transduction in skeletal muscle from diabetic Goto-Kakizaki rats. Endocrinology 144(12):5259–5267

    PubMed  CAS  Google Scholar 

  103. Song XM, Kawano Y, Krook A et al (1999) Muscle fiber type-specific defects in insulin signal transduction to glucose transport in diabetic GK rats. Diabetes 48(3):664–670

    PubMed  CAS  Google Scholar 

  104. Farese RV, Standaert ML, Yamada K et al (1994) Insulin-induced activation of glycerol-3-phosphate acyltransferase by a chiro-inositol-containing insulin mediator is defective in adipocytes of insulin-resistant, type II diabetic, Goto-Kakizaki rats. Proc Natl Acad Sci U S A 91(23):11040–11044

    PubMed  CAS  Google Scholar 

  105. Begum N, Ragolia L (1998) Altered regulation of insulin signaling components in adipocytes of insulin-resistant type II diabetic Goto-Kakizaki rats. Metabolism 47:54–62

    PubMed  CAS  Google Scholar 

  106. Dadke SS, Li HC, Kusari AB et al (2000) Elevated expression and activity of protein-tyrosine phosphatase 1B in skeletal muscle of insulin-resistant type II diabetic Goto-Kakizaki rats. Biochem Biophys Res Commun 274(3):583–589

    PubMed  CAS  Google Scholar 

  107. Kanoh Y, Bandyopadhyay G, Sajan MP et al (2001) Rosiglitazone, insulin treatment, and fasting correct defective activation of protein kinase C-zeta/lambda by insulin in vastus lateralis muscles and adipocytes of diabetic rats. Endocrinology 142(4):1595–1605

    PubMed  CAS  Google Scholar 

  108. Nie J, Xue B, Sukumaran S et al (2011) Differential muscle gene expression as a function of disease progression in Goto-Kakizaki diabetic rats. Mol Cell Endocrinol 338(1–2):10–17

    PubMed  CAS  Google Scholar 

  109. Yasuda K, Nishikawa W, Iwanaka N et al (2002) Abnormality in fibre type distribution of soleus and plantaris muscles in non-obese diabetic Goto-Kakizaki rats. Clin Exp Pharmacol Physiol 29(11):1001–1008

    PubMed  CAS  Google Scholar 

  110. Copp SW, Hageman KS, Behnke BJ et al (2010) Effects of type II diabetes on exercising skeletal muscle blood flow in the rat. J Appl Physiol 109(5):1347–1353

    PubMed  Google Scholar 

  111. Padilla DJ, McDonough P, Behnke BJ et al (2006) Effects of type II diabetes on capillary hemodynamics in skeletal muscle. Am J Physiol Heart Circ Physiol 291(5):H2439–H2444

    PubMed  CAS  Google Scholar 

  112. Padilla DJ, McDonough P, Behnke BJ et al (2007) Effects of type II diabetes on muscle microvascular oxygen pressures. Respir Physiol Neurobiol 156(2):187–195

    PubMed  CAS  Google Scholar 

  113. Barzilai N, Rossetti L (1995) Relationship between changes in body composition and insulin responsiveness in models of the aging rat. Am J Physiol 1269:E591–E597

    Google Scholar 

  114. De Fronzo RA (1979) Glucose intolerance and aging. Diabetes 28:1095–1101

    Google Scholar 

  115. Xue B, Sukumaran S, Nie J et al (2011) Adipose tissue deficiency and chronic inflammation in diabetic Goto-Kakizaki rats. PLoS One 6(2):e17386

    PubMed  CAS  Google Scholar 

  116. Movassat J, Calderari S, Fernández E et al (2007) Type 2 diabetes—a matter of failing beta-cell neogenesis? Clues from the GK rat model. Diabetes Obes Metab 9(suppl 2):187–195

    PubMed  CAS  Google Scholar 

  117. Serradas P, Goya L, Lacorne M et al (2002) Fetal insulin-like growth factor-2 production is impaired in the GK rat model of type 2 diabetes. Diabetes 51:392–397

    PubMed  CAS  Google Scholar 

  118. Katakura M, Komatsu M, Sato Y et al (2004) Primacy of beta-cell dysfunction in the development of hyperglycemia: a study in the Japanese general population. Metabolism 53:949–953

    PubMed  CAS  Google Scholar 

  119. Lin JM, Ortsäter H, Fakhraid-Ra H et al (2001) Phenotyping of individual pancreatic islets locates genetic defects in stimulus secretion coupling to Niddm1i within the major diabetes locus in GK rats. Diabetes 50:2737–2743

    PubMed  CAS  Google Scholar 

  120. Granhall C, Rosengren AH, Renström E et al (2006) Separately inherited defects in insulin exocytosis and beta-cell glucose metabolism contribute to type 2 diabetes. Diabetes 55:3494–3500

    PubMed  CAS  Google Scholar 

  121. Wallis RH, Collins SC, Kaisaki PJ et al (2008) Pathophysiological, genetic and gene expression features of a novel rodent model of the cardio-metabolic syndrome. PLoS One 3(8):e2962

    PubMed  Google Scholar 

  122. Finlay C, Argoud K, Wilder SP et al (2010) Chromosomal mapping of pancreatic islet morphological features and regulatory hormones in the spontaneously diabetic (type 2) Goto-Kakizaki rat. Mamm Genome 21:499–508

    PubMed  CAS  Google Scholar 

  123. Hu Y, Kaisaki P, Argoud K et al (2009) Functional annotations of diabetes nephropathy susceptibility loci through analysis of genome-wide renal gene expression in rat models of diabetes mellitus. BMC Med Genomics 2:41

    PubMed  Google Scholar 

  124. Argoud K, Wilder SP, McAteer MA et al (2006) Genetic control of plasma lipid levels in a cross derived from normoglycaemic Brown Norway and spontaneously diabetic Goto-Kakizaki rats. Diabetologia 49:2679–2688

    PubMed  CAS  Google Scholar 

  125. Bilusic M, Bataillard A, Tschannen MR et al (2004) Mapping the genetic determinants of hypertension, metabolic diseases, and related phenotypes in the lyon hypertensive rat. Hypertension 44:695–701

    PubMed  CAS  Google Scholar 

  126. Galli J, Fakhrai-Rad H, Kamel A et al (1999) Pathophysiological and genetic characterization of the major diabetes locus in GK rats. Diabetes 48(12):2463–2470

    PubMed  CAS  Google Scholar 

  127. Duggirala R, Blangero J, Almasy L et al (1999) Linkage of type 2 diabetes mellitus and of age at onset to a genetic location on chromosome 10q in Mexican Americans. Am J Hum Genet 64:1127–1140

    PubMed  CAS  Google Scholar 

  128. Grant SF, Thorleifsson G, Reynisdottir I et al (2006) Variant of transcription factor 7-like 2 (TCF7L2) gene confers risk of type 2 diabetes. Nat Genet 38:320–323

    PubMed  CAS  Google Scholar 

  129. Rosengren AH, Jokubka R, Tojjar D et al (2010) Overexpression of alpha2A-adrenergic receptors contributes to type 2 diabetes. Science 327:217–220

    PubMed  CAS  Google Scholar 

  130. Fakhrai-Rad H, Nikoshkov A, Kamel A et al (2000) Insulin-degrading enzyme identified as a candidate diabetes susceptibility gene in GK rats. Hum Mol Genet 9(14):2149–2158

    PubMed  CAS  Google Scholar 

  131. Marion E, Kaisaki PJ, Pouillon V et al (2002) The gene INPPL1, encoding the lipid phosphatase SHIP2, is a candidate for type 2 diabetes in rat and man. Diabetes 51(7):2012–2017

    PubMed  CAS  Google Scholar 

  132. Herrera BM, Lockstone HE, Taylor JM et al (2010) Global microRNA expression profiles in insulin target tissues in a spontaneous rat model of type 2 diabetes. Diabetologia 53(6):1099–1109

    PubMed  CAS  Google Scholar 

  133. Esguerra JL, Bolmeson C, Cilio CM et al (2011) Differential glucose-regulation of microRNAs in pancreatic islets of non-obese type 2 diabetes model Goto-Kakizaki rat. PLoS One 6(4):e18613

    PubMed  CAS  Google Scholar 

  134. Simmons R (2006) Developmental origins of adult metabolic disease. Endocrinol Metab Clin North Am 35:193–204

    PubMed  CAS  Google Scholar 

  135. Portha B, Chavey A, Movassat J (2011) Early-life origins of type 2 diabetes: fetal programming of the beta-cell mass. Exp Diabetes Res 2011:105076

    PubMed  Google Scholar 

  136. Serradas P, Gangnerau MN, Giroix MH et al (1998) Impaired pancreatic beta cell function in the fetal GK rat. Impact of diabetic inheritance. J Clin Invest 101:899–904

    PubMed  CAS  Google Scholar 

  137. Gill-Randall R, Adams D, Ollerton RL et al (2004) Type 2 diabetes mellitus—genes or intrauterine environment? An embryo transfer paradigm in rats. Diabetologia 47:1354–1369

    PubMed  CAS  Google Scholar 

  138. Chavey A, Gangnerau MN, Maulny L et al (2008) Intrauterine programming of beta-cell development and function by maternal diabetes. What tell us embryo-transfer experiments in GK/Par rats? (Abstract). Diabetologia 51(suppl 1):A151

    Google Scholar 

  139. Calderari S, Gangnerau MN, Meile MJ et al (2006) Is defective pancreatic beta-cell mass environmentally programmed in Goto Kakizaki rat model of type 2 diabetes: insights from cross breeding studies during suckling period. Pancreas 33:412–417

    PubMed  Google Scholar 

  140. Mizukami H, Wada R, Koyama M et al (2008) Augmented beta-cell loss and mitochondrial abnormalities in sucrose-fed GK rats. Virchows Arch 452:383–392

    PubMed  CAS  Google Scholar 

  141. Yasuda K, Okamoto Y, Nunoi K et al (2002) Normalization of cytoplasmic calcium response in pancreatic beta-cells of spontaneously diabetic GK rat by the treatment with T-1095, a specific inhibitor of renal Na+-glucose co-transporters. Horm Metab Res 34:217–221

    PubMed  CAS  Google Scholar 

  142. Kawai J, Ohara-Imaizumi M, Nakamichi Y et al (2008) Insulin exocytosis in Goto-Kakizaki rat beta-cells subjected to long-term glinide or sulfonylurea treatment. Biochem J 412:93–101

    PubMed  CAS  Google Scholar 

  143. Dachicourt N, Bailbé D, Gangnerau MN et al (1998) Effect of gliclazide treatment on insulin secretion and beta-cell mass in non-insulin dependent diabetic Goto-Kakizaki rats. Eur J Pharmacol 361:243–251

    PubMed  CAS  Google Scholar 

  144. Ohta T, Furukawa N, Komuro G et al (1999) JTT-608 restores impaired early insulin secretion in diabetic Goto-Kakizaki rats. Br J Pharmacol 126:1674–1680

    PubMed  CAS  Google Scholar 

  145. Ohta T, Miyajima K, Komuro G et al (2003) Antidiabetic effect of chronic administration of JTT-608, a new hypoglycaemic agent, in diabetic Goto-Kakizaki rats. Eur J Pharmacol 476:159–166

    PubMed  CAS  Google Scholar 

  146. Ishida H, Kato S, Nishimura M et al (1998) Beneficial effect of long-term combined treatment with voglibose and pioglitazone on pancreatic islet function of genetically diabetic GK rats. Horm Metab Res 30:673–678

    PubMed  CAS  Google Scholar 

  147. Goto Y, Kakizaki M, Yagihashi S (1982) Neurological findings in spontaneously diabetic rats. Excerpta Med Int Congr Ser 581:26–38

    Google Scholar 

  148. Kitahara Y, Miura K, Takesue K et al (2002) Decreased blood glucose excursion by nateglinide ameliorated neuropathic changes in Goto Kakizaki rats, an animal model of non-obese type 2 diabetes. Metabolism 5:1452–1457

    Google Scholar 

  149. Murakawa Y, Zhang W, Pierson CR et al (2002) Impaired glucose tolerance and insulinopenia in the GK-rat causes peripheral neuropathy. Diabetes Metab Res Rev 18(6):473–483

    PubMed  CAS  Google Scholar 

  150. Agardh CD, Agardh E, Zhang H, Östenson CG (1997) Altered endothelial/pericyte ratio in Goto–Kakizaki rat retina. J Diabetes Complications 11:158–162

    PubMed  CAS  Google Scholar 

  151. Agardh CD, Agardh E, Hultberg B et al (1998) The glutathione levels are reduced in Goto-Kakizaki rat retina, but are not influenced by aminoguanidine treatment. Curr Eye Res 17(3):251–256

    PubMed  CAS  Google Scholar 

  152. Sone H, Kawakami Y, Okuda Y et al (1997) Ocular vascular endothelial growth factor levels in diabetic rats are elevated before observable retinal proliferative changes. Diabetologia 40(6):726–730

    PubMed  CAS  Google Scholar 

  153. Miyamoto K, Ogura Y, Nishiwaki H et al (1996) Evaluation of retinal microcirculatory alterations in the Goto-Kakizaki rat. A spontaneous model of non-insulin-dependent diabetes. Invest Ophthalmol Vis Sci 37:898–905

    PubMed  CAS  Google Scholar 

  154. Carmo A, Cunha-Vaz JG, Carvalho AP et al (2000) Nitric oxide synthase activity in retinas from non-insulin-dependent diabetic Goto–Kakizaki rats: correlation with blood-retinal barrier permeability. Nitric Oxide 4:590–596

    PubMed  CAS  Google Scholar 

  155. Lang BT, Yan Y, Dempsey RJ et al (2009) Impaired neurogenesis in adult type-2 diabetic rats. Brain Res 1258:25–33

    PubMed  CAS  Google Scholar 

  156. Moreira T, Malec E, Ostenson CG et al (2007) Diabetic type II Goto-Kakizaki rats show progressively decreasing exploratory activity and learning impairments in fixed and progressive ratios of a lever-press task. Behav Brain Res 180:28–41

    PubMed  CAS  Google Scholar 

  157. Moreira T, Cebers G, Pickering C et al (2007) Diabetic Goto-Kakizaki rats display pronounced hyperglycemia and longer-lasting cognitive impairments following ischemia induced by cortical compression. Neuroscience 144(4):1169–1185

    PubMed  CAS  Google Scholar 

  158. Moreira TJ, Cebere A, Cebers G et al (2007) Reduced HO-1 protein expression is associated with more severe neurodegeneration after transient ischemia induced by cortical compression in diabetic Goto-Kakizaki rats. J Cereb Blood Flow Metab 27(10):1710–1723

    PubMed  CAS  Google Scholar 

  159. Moreira PI, Santos MS, Moreno AM et al (2003) Increased vulnerability of brain mitochondria in diabetic (Goto-Kakizaki) rats with aging and amyloid-beta exposure. Diabetes 52:1449–1456

    PubMed  CAS  Google Scholar 

  160. Janssen U, Vassiliadou A, Riley SG et al (2004) The quest for a model of type II diabetes with nephropathy: the Goto Kakizaki rat. J Nephrol 17(6):769–773

    PubMed  Google Scholar 

  161. Valensi P, Mesangeau D, Paries J et al (1996) Erythrocyte rheology and heart hypertrophy in diabetes mellitus. J Mal Vasc 21:185–187

    PubMed  CAS  Google Scholar 

  162. Witte K, Jacke K, Stahrenberg R et al (2002) Dysfunction of soluble guanylyl cyclase in aorta and kidney of Goto-Kakizaki rats: influence of age and diabetic state. Nitric Oxide 6:85–95

    PubMed  CAS  Google Scholar 

  163. Cheng ZJ, Vaskonen T, Tikkanen I et al (2001) Endothelial dysfunction and salt-sensitive hypertension in spontaneously diabetic Goto-Kakizaki rats. Hypertension 37:433–439

    PubMed  CAS  Google Scholar 

  164. Desrois M, Sidell RJ, Gauguier D et al (2004) Initial steps of insulin signaling and glucose transport are defective in the type 2 diabetic rat heart. Cardiovasc Res 61:288–296

    PubMed  CAS  Google Scholar 

  165. Darmellah A, Baetz D, Prunier F et al (2007) Enhanced activity of the myocardial Na+/H+ exchanger contributes to left ventricular hypertrophy in the Goto-Kakizaki rat model of type 2 diabetes: critical role of Akt. Diabetologia 50:1335–1344

    PubMed  CAS  Google Scholar 

  166. El-Omar MM, Yang ZK, Phillips AO et al (2004) Cardiac dysfunction in the Goto–Kakizaki rat. A model of type II diabetes mellitus. Basic Res Cardiol 99:133–141

    PubMed  Google Scholar 

  167. Chandler MP, Morgan EE, McElfresh TA et al (2007) Heart failure progression is accelerated following myocardial infarction in type 2 diabetic rats. Am J Physiol Heart Circ Physiol 293:H1609–H1616

    PubMed  CAS  Google Scholar 

  168. Kristiansen SB, Lofgren B, Stottrup NB et al (2004) Ischaemic preconditioning does not protect the heart in obese and lean animal models of type 2 diabetes. Diabetologia 47:1716–1721

    PubMed  CAS  Google Scholar 

  169. Howarth FC, Shafiullah M, Qureshi MA (2007) Chronic effects of type 2 diabetes mellitus on cardiac muscle contraction in the Goto-Kakizaki rat. Exp Physiol 92:1029–1036

    PubMed  CAS  Google Scholar 

  170. Howarth FC, Jacobson M, Shafiullah M et al (2008) Long-term effects of type 2 diabetes mellitus on heart rhythm in the Goto-Kakizaki rat. Exp Physiol 93:362–369

    PubMed  Google Scholar 

  171. Desrois M, Clarke K, Lan C et al (2010) Upregulation of eNOS and unchanged energy metabolism in increased susceptibility of the aging type 2 diabetic GK rat heart to ischemic injury. Am J Physiol Heart Circ Physiol 299:H1679–H1686

    PubMed  CAS  Google Scholar 

  172. Kazuyama E, Saito M et al (2009) Endothelial dysfunction in the early- and late-stage type-2 diabetic Goto-Kakizaki rat aorta. Mol Cell Biochem 332:95–102

    PubMed  CAS  Google Scholar 

  173. Bulhak AA, Jung C, Ostenson CG et al (2009) PPAR-alpha activation protects the type 2 diabetic myocardium against ischemia-reperfusion injury: involvement of the PI3-Kinase/Akt and NO pathway. Am J Physiol Heart Circ Physiol 296:H719–H727

    PubMed  CAS  Google Scholar 

  174. El-Omar MM, Lord R, Draper NJ et al (2003) Role of nitric oxide in posthypoxic contractile dysfunction of diabetic cardiomyopathy. Eur J Heart Fail 5:229–239

    PubMed  CAS  Google Scholar 

  175. Santos DL, Palmeira CM, Seiça R et al (2003) Diabetes and mitochondrial oxidative stress: a study using heart mitochondria from the diabetic Goto-Kakizaki rat. Mol Cell Biochem 246(1–2):63–70

    Google Scholar 

  176. Phillips AO, Baboolal K, Riley S et al (2001) Association of prolonged hyperglycemia with glomerular hypertrophy and renal basement membrane thickening in the Goto Kakizaki model of non-insulin-dependent diabetes mellitus. Am J Kidney Dis 37(2):400–410

    PubMed  CAS  Google Scholar 

  177. Schrijvers BF, De Vriese AS, Van de Voorde J et al (2004) Long-term renal changes in the Goto-Kakizaki rat, a model of lean type 2 diabetes. Nephrol Dial Transplant 19:1092–1097

    PubMed  Google Scholar 

  178. Vesely DL, Gower WR Jr, Dietz JR, Overton RM, Clark LC, Antwi EK, Farese RV (1999) Elevated atrial natriuretic peptides and early renal failure in type 2 diabetic Goto-Kakizaki rats. Metabolism 48(6):771–778

    PubMed  CAS  Google Scholar 

  179. Yagihashi S, Goto Y, Kakizaki M et al (1978) Thickening of glomerular basement membrane in spontaneously diabetic rats. Diabetologia 15:309–312

    PubMed  CAS  Google Scholar 

  180. Sato N, Komatsu K, Kurumatani H (2003) Late onset of diabetic nephropathy in spontaneously diabetic GK rats. Am J Nephrol 23:334–342

    PubMed  Google Scholar 

  181. Yoshida S, Yamashita S, Tokunaga K et al (1996) Visceral fat accumulation and vascular complications associated with VMH lesioning of spontaneously non-insulin-dependent diabetic GK rat. Int J Obes Relat Metab Disord 20(10):909–916

    PubMed  CAS  Google Scholar 

  182. Nishida M, Miyagawa JI, Tokunaga K et al (1997) Early morphologic changes of atherosclerosis induced by ventromedial hypothalamic lesion in the spontaneously diabetic Goto-Kakizaki rat. J Lab Clin Med 129(2):200–207

    PubMed  CAS  Google Scholar 

  183. Louro TM, Matafome PN, Nunes EC et al (2011) Insulin and metformin may prevent renal injury in young type 2 diabetic Goto-Kakizaki rats. Eur J Pharmacol 25(653):89–94

    Google Scholar 

  184. Östenson CG, Fière V, Ahmed M et al (1997) Decreased cortical bone thickness in spontaneously non-insulin-dependent diabetic GK rats. J Diabetes Complications 11(6):319–322

    PubMed  Google Scholar 

  185. Ahmad T, Ohlsson C, Sääf M et al (2003) Skeletal changes in type-2 diabetic Goto-Kakizaki rats. J Endocrinol 178(1):111–116

    PubMed  CAS  Google Scholar 

  186. Ahmad T, Ugarph-Morawski A, Li J et al (2004) Bone and joint neuropathy in rats with type-2 diabetes. Regul Pept 119(1–2):61–67

    PubMed  CAS  Google Scholar 

  187. Wang F, Song YL, Li DH et al (2010) Type 2 diabetes mellitus impairs bone healing of dental implants in GK rats. Diabetes Res Clin Pract 88:e7–e9

    PubMed  Google Scholar 

Download references

Acknowledgments

The GK/Par studies done at Lab B2PE, BFA Unit, have been funded by the CNRS, the University Paris-Diderot, the French ANR (programme Physio 2006—Prograbeta), the EFSD/MSD European Foundation, SERVIER, MERCK-SERONO, NOVO-Nordisk, PFIZER, MetaBrain Research, NESTLE-France, the SFD/French Diabetes Association, the FRM/Medical Research Foundation and NEB Research Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernard Portha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Portha, B., Giroix, MH., Tourrel-Cuzin, C., Le-Stunff, H., Movassat, J. (2012). The GK Rat: A Prototype for the Study of Non-overweight Type 2 Diabetes. In: Joost, HG., Al-Hasani, H., Schürmann, A. (eds) Animal Models in Diabetes Research. Methods in Molecular Biology, vol 933. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-068-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-068-7_9

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-067-0

  • Online ISBN: 978-1-62703-068-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics