Skip to main content

Diabetes in Zucker Diabetic Fatty Rat

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 933))

Abstract

Male Zucker diabetic fatty fa/fa (ZDF) rats develop obesity and insulin resistance at a young age, and then with aging, progressively develop hyperglycemia. This hyperglycemia is associated with impaired pancreatic β-cell function, loss of pancreatic β-cell mass, and decreased responsiveness of liver and extrahepatic tissues to the actions of insulin and glucose. Of particular interest are the insights provided by studies of these animals into the mechanism behind the progressive impairment of carbohydrate metabolism. This feature among others, including the development of obesity- and hyperglycemia-related complications, is common between male ZDF rats and humans with type 2 diabetes associated with obesity. We discuss the diabetic features and complications found in ZDF rats and why these animals are widely used as a genetic model for obese type 2 diabetes.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Phillips MS, Liu Q, Hammond HA et al (1996) Leptin receptor missense mutation in the fatty Zucker rat. Nat Genet 13:18–19

    PubMed  CAS  Google Scholar 

  2. Truett GE, Bahary N, Friedman JM et al (1991) Rat obesity gene fatty (fa) maps to chromosome 5: evidence for homology with the mouse gene diabetes (db). Proc Natl Acad Sci U S A 88:7806–7809

    PubMed  CAS  Google Scholar 

  3. Peterson RG, Shaw WN, Neel MA et al (1990) Zucker diabetic fatty rat as a model for non-insulin-dependent diabetes mellitus. ILAR News 32:16–19

    Google Scholar 

  4. Clark JB, Palmer CJ, Shaw WN (1983) The diabetic Zucker fatty rat. Proc Soc Exp Biol Med 173:68–75

    PubMed  CAS  Google Scholar 

  5. Corsetti JP, Sparks JD, Peterson RG et al (2000) Effect of dietary fat on the development of non-insulin dependent diabetes mellitus in obese Zucker diabetic fatty male and female rats. Atherosclerosis 148:231–241

    PubMed  CAS  Google Scholar 

  6. Peterson RG (1994) alpha-Glucosidase inhibitors in diabetes: lessons from animal studies. Eur J Clin Invest 24(suppl 3):11–18

    PubMed  CAS  Google Scholar 

  7. Kava R, Peterson RG, West DB et al (1990) New rat models of obesity and type II diabetes. ILAR News 32:4–8

    Google Scholar 

  8. Aleixandre de Artinano A, Miguel Castro M (2009) Experimental rat models to study the metabolic syndrome. Br J Nutr 102:1246–1253

    PubMed  CAS  Google Scholar 

  9. Johnson PR, Greenwood MR, Horwitz BA et al (1991) Animal models of obesity: genetic aspects. Annu Rev Nutr 11:325–353

    PubMed  CAS  Google Scholar 

  10. Ikeda H, Shino A, Matsuo T et al (1981) A new genetically obese-hyperglycemic rat (Wistar fatty). Diabetes 30:1045–1050

    PubMed  CAS  Google Scholar 

  11. Coleman DL, Hummel KP (1967) Studies with the mutation, diabetes, in the mouse. Diabetologia 3:238–248

    PubMed  CAS  Google Scholar 

  12. Naggert JK, Mu JL, Frankel W et al (1995) Genomic analysis of the C57BL/Ks mouse strain. Mamm Genome 6:131–133

    PubMed  CAS  Google Scholar 

  13. Leiter EH, Coleman DL, Hummel KP (1981) The influence of genetic background on the expression of mutations at the diabetes locus in the mouse: III. Effect of H-2 haplotype and sex. Diabetes 30:1029–1034

    PubMed  CAS  Google Scholar 

  14. Munoz MC, Barbera A, Dominguez J et al (2001) Effects of tungstate, a new potential oral antidiabetic agent, in Zucker diabetic fatty rats. Diabetes 50:131–138

    PubMed  CAS  Google Scholar 

  15. Torres TP, Catlin RL, Chan R et al (2009) Restoration of hepatic glucokinase expression corrects hepatic glucose flux and normalizes plasma glucose in Zucker diabetic fatty rats. Diabetes 58:78–86

    PubMed  CAS  Google Scholar 

  16. Etgen GJ, Oldham BA (2000) Profiling of Zucker diabetic fatty rats in their progression to the overt diabetic state. Metabolism 49:684–688

    PubMed  CAS  Google Scholar 

  17. Johnson JH, Ogawa A, Chen L et al (1990) Underexpression of beta cell high Km glucose transporters in noninsulin-dependent diabetes. Science 250:546–549

    PubMed  CAS  Google Scholar 

  18. Tokuyama Y, Sturis J, DePaoli AM et al (1995) Evolution of beta-cell dysfunction in the male Zucker diabetic fatty rat. Diabetes 44:1447–1457

    PubMed  CAS  Google Scholar 

  19. van Poelje PD, Potter SC, Chandramouli VC et al (2006) Inhibition of fructose 1,6-bisphosphatase reduces excessive endogenous glucose production and attenuates hyperglycemia in Zucker diabetic fatty rats. Diabetes 55:1747–1754

    PubMed  Google Scholar 

  20. Winter CL, Lange JS, Davis MG et al (2005) A nonspecific phosphotyrosine phosphatase inhibitor, bis(maltolato)oxovanadium(IV), improves glucose tolerance and prevents diabetes in Zucker diabetic fatty rats. Exp Biol Med (Maywood) 230:207–216

    CAS  Google Scholar 

  21. Harmon JS, Gleason CE, Tanaka Y et al (2001) Antecedent hyperglycemia, not hyperlipidemia, is associated with increased islet triacylglycerol content and decreased insulin gene mRNA level in Zucker diabetic fatty rats. Diabetes 50:2481–2486

    PubMed  CAS  Google Scholar 

  22. Fujimoto Y, Donahue EP, Shiota M (2004) Defect in glucokinase translocation in Zucker diabetic fatty rats. Am J Physiol Endocrinol Metab 287:E414–E423

    PubMed  CAS  Google Scholar 

  23. Fujimoto Y, Torres TP, Donahue EP et al (2006) Glucose toxicity is responsible for the development of impaired regulation of endogenous glucose production and hepatic glucokinase in Zucker diabetic fatty rats. Diabetes 55:2479–2490

    PubMed  CAS  Google Scholar 

  24. Torres TP, Fujimoto Y, Donahue EP et al (2011) Defective glycogenesis contributes toward the inability to suppress hepatic glucose production in response to hyperglycemia and hyperinsulinemia in Zucker diabetic fatty rats. Diabetes 60:2225–2233

    PubMed  CAS  Google Scholar 

  25. Wijekoon EP, Skinner C, Brosnan ME et al (2004) Amino acid metabolism in the Zucker diabetic fatty rat: effects of insulin resistance and of type 2 diabetes. Can J Physiol Pharmacol 82:506–514

    PubMed  CAS  Google Scholar 

  26. Doisaki M, Katano Y, Nakano I et al (2010) Regulation of hepatic branched-chain alpha-keto acid dehydrogenase kinase in a rat model for type 2 diabetes mellitus at different stages of the disease. Biochem Biophys Res Commun 393:303–307

    PubMed  CAS  Google Scholar 

  27. Sparks JD, Phung TL, Bolognino M et al (1998) Lipoprotein alterations in 10- and 20-week-old Zucker diabetic fatty rats: hyperinsulinemic versus insulinopenic hyperglycemia. Metabolism 47:1315–1324

    PubMed  CAS  Google Scholar 

  28. Golay A, Felber JP (1994) Evolution from obesity to diabetes. Diabetes Metab 20:3–14

    CAS  Google Scholar 

  29. Green GM, Guan D, Schwartz JG et al (1997) Accelerated gastric emptying of glucose in Zucker type 2 diabetic rats: role in postprandial hyperglycaemia. Diabetologia 40:136–142

    PubMed  CAS  Google Scholar 

  30. Phillips WT, Schwartz JG, McMahan CA (1992) Rapid gastric emptying of an oral glucose solution in type 2 diabetic patients. J Nucl Med 33:1496–1500

    PubMed  CAS  Google Scholar 

  31. DeFronzo RA (1988) Lilly lecture 1987. The triumvirate: beta-cell, muscle, liver. A collusion responsible for NIDDM. Diabetes 37:667–687

    PubMed  CAS  Google Scholar 

  32. Petersen KF, Dufour S, Savage DB et al (2007) The role of skeletal muscle insulin resistance in the pathogenesis of the metabolic syndrome. Proc Natl Acad Sci U S A 104:12587–12594

    PubMed  CAS  Google Scholar 

  33. Leonard BL, Watson RN, Loomes KM et al (2005) Insulin resistance in the Zucker diabetic fatty rat: a metabolic characterisation of obese and lean phenotypes. Acta Diabetol 42:162–170

    PubMed  CAS  Google Scholar 

  34. Henriksen EJ (2002) Invited review: effects of acute exercise and exercise training on insulin resistance. J Appl Physiol 93:788–796

    PubMed  CAS  Google Scholar 

  35. Shulman GI (2000) Cellular mechanisms of insulin resistance. J Clin Invest 106:171–176

    PubMed  CAS  Google Scholar 

  36. Zierath JR, Krook A, Wallberg-Henriksson H (2000) Insulin action and insulin resistance in human skeletal muscle. Diabetologia 43:821–835

    PubMed  CAS  Google Scholar 

  37. Friedman JE, de Vente JE, Peterson RG et al (1991) Altered expression of muscle glucose transporter GLUT-4 in diabetic fatty Zucker rats (ZDF/Drt-fa). Am J Physiol 261:E782–E788

    PubMed  CAS  Google Scholar 

  38. Cline GW, Johnson K, Regittnig W et al (2002) Effects of a novel glycogen synthase kinase-3 inhibitor on insulin-stimulated glucose metabolism in Zucker diabetic fatty (fa/fa) rats. Diabetes 51:2903–2910

    PubMed  CAS  Google Scholar 

  39. Henriksen EJ, Kinnick TR, Teachey MK et al (2003) Modulation of muscle insulin resistance by selective inhibition of GSK-3 in Zucker diabetic fatty rats. Am J Physiol Endocrinol Metab 284:E892–E900

    PubMed  CAS  Google Scholar 

  40. Henriksen EJ, Teachey MK (2007) Short-term in vitro inhibition of glycogen synthase kinase 3 potentiates insulin signaling in type I skeletal muscle of Zucker diabetic fatty rats. Metabolism 56:931–938

    PubMed  CAS  Google Scholar 

  41. Gerich JE (2010) Role of the kidney in normal glucose homeostasis and in the hyperglycaemia of diabetes mellitus: therapeutic implications. Diabet Med 27:136–142

    PubMed  CAS  Google Scholar 

  42. Kamran M, Peterson RG, Dominguez JH (1997) Overexpression of GLUT2 gene in renal proximal tubules of diabetic Zucker rats. J Am Soc Nephrol 8:943–948

    PubMed  CAS  Google Scholar 

  43. Cersosimo E, Garlick P, Ferretti J (2000) Regulation of splanchnic and renal substrate supply by insulin in humans. Metabolism 49:676–683

    PubMed  CAS  Google Scholar 

  44. Ekberg K, Landau BR, Wajngot A et al (1999) Contributions by kidney and liver to glucose production in the postabsorptive state and after 60 h of fasting. Diabetes 48:292–298

    PubMed  CAS  Google Scholar 

  45. Stumvoll M, Chintalapudi U, Perriello G et al (1995) Uptake and release of glucose by the human kidney. Postabsorptive rates and responses to epinephrine. J Clin Invest 96:2528–2533

    PubMed  CAS  Google Scholar 

  46. Meyer C, Stumvoll M, Nadkarni V et al (1998) Abnormal renal and hepatic glucose metabolism in type 2 diabetes mellitus. J Clin Invest 102:619–624

    PubMed  CAS  Google Scholar 

  47. Meyer C, Woerle HJ, Dostou JM et al (2004) Abnormal renal, hepatic, and muscle glucose metabolism following glucose ingestion in type 2 diabetes. Am J Physiol Endocrinol Metab 287:E1049–E1056

    PubMed  CAS  Google Scholar 

  48. Eid A, Bodin S, Ferrier B et al (2006) Intrinsic gluconeogenesis is enhanced in renal proximal tubules of Zucker diabetic fatty rats. J Am Soc Nephrol 17:398–405

    PubMed  CAS  Google Scholar 

  49. Butler AE, Janson J, Bonner-Weir S et al (2003) Beta-cell deficit and increased beta-cell apoptosis in humans with type 2 diabetes. Diabetes 52:102–110

    PubMed  CAS  Google Scholar 

  50. Clark A, Wells CA, Buley ID et al (1988) Islet amyloid, increased A-cells, reduced B-cells and exocrine fibrosis: quantitative changes in the pancreas in type 2 diabetes. Diabetes Res 9:151–159

    PubMed  CAS  Google Scholar 

  51. Kloppel G, Lohr M, Habich K et al (1985) Islet pathology and the pathogenesis of type 1 and type 2 diabetes mellitus revisited. Surv Synth Pathol Res 4:110–125

    PubMed  CAS  Google Scholar 

  52. Stefan Y, Orci L, Malaisse-Lagae F et al (1982) Quantitation of endocrine cell content in the pancreas of nondiabetic and diabetic humans. Diabetes 31:694–700

    PubMed  CAS  Google Scholar 

  53. U.K. Prospective Diabetes Study Group (1995) U.K. prospective diabetes study 16. Overview of 6 years’ therapy of type II diabetes: a progressive disease. Diabetes 44:1249–1258

    Google Scholar 

  54. Kahn SE (2000) The importance of the beta-cell in the pathogenesis of type 2 diabetes mellitus. Am J Med 108(suppl 6a):2S–8S

    PubMed  CAS  Google Scholar 

  55. Pick A, Clark J, Kubstrup C et al (1998) Role of apoptosis in failure of beta-cell mass compensation for insulin resistance and beta-cell defects in the male Zucker diabetic fatty rat. Diabetes 47:358–364

    PubMed  CAS  Google Scholar 

  56. Finegood DT, McArthur MD, Kojwang D et al (2001) Beta-cell mass dynamics in Zucker diabetic fatty rats. Rosiglitazone prevents the rise in net cell death. Diabetes 50:1021–1029

    PubMed  CAS  Google Scholar 

  57. Tang J, Pugh W, Polonsky KS et al (1996) Preservation of insulin secretory responses to P2 purinoceptor agonists in Zucker diabetic fatty rats. Am J Physiol 270:E504–E512

    PubMed  CAS  Google Scholar 

  58. Tikellis C, Wookey PJ, Candido R et al (2004) Improved islet morphology after blockade of the renin-angiotensin system in the ZDF rat. Diabetes 53:989–997

    PubMed  CAS  Google Scholar 

  59. Cherrington AD, Wasserman DH, McGinness OP (1994) Renal contribution to glucose production after a brief fast: fact or fancy? J Clin Invest 93:2303

    PubMed  CAS  Google Scholar 

  60. Petersen KF, Laurent D, Rothman DL et al (1998) Mechanism by which glucose and insulin inhibit net hepatic glycogenolysis in humans. J Clin Invest 101:1203–1209

    PubMed  CAS  Google Scholar 

  61. Siler SQ, Neese RA, Christiansen MP et al (1998) The inhibition of gluconeogenesis following alcohol in humans. Am J Physiol 275:E897–E907

    PubMed  CAS  Google Scholar 

  62. Radziuk J, Pye S (2001) Hepatic glucose uptake, gluconeogenesis and the regulation of glycogen synthesis. Diabetes Metab Res Rev 17:250–272

    PubMed  CAS  Google Scholar 

  63. Cline GW, Rothman DL, Magnusson I et al (1994) 13C-nuclear magnetic resonance spectroscopy studies of hepatic glucose metabolism in normal subjects and subjects with insulin-dependent diabetes mellitus. J Clin Invest 94:2369–2376

    PubMed  CAS  Google Scholar 

  64. Petersen KF, Cline GW, Gerard DP et al (2001) Contribution of net hepatic glycogen synthesis to disposal of an oral glucose load in humans. Metabolism 50:598–601

    PubMed  CAS  Google Scholar 

  65. Radziuk J (1989) Hepatic glycogen in humans: I. Direct formation after oral and intravenous glucose or after a 24-h fast. Am J Physiol 257:E145–E157

    PubMed  CAS  Google Scholar 

  66. Anderwald C, Bernroider E, Krssak M et al (2002) Effects of insulin treatment in type 2 diabetic patients on intracellular lipid content in liver and skeletal muscle. Diabetes 51:3025–3032

    PubMed  CAS  Google Scholar 

  67. Boden G, Chen X, Stein TP (2001) Gluconeogenesis in moderately and severely hyperglycemic patients with type 2 diabetes mellitus. Am J Physiol Endocrinol Metab 280:E23–E30

    PubMed  CAS  Google Scholar 

  68. Radziuk J, Pye S (2001) Production and metabolic clearance of glucose under basal conditions in type II (non-insulin-dependent) diabetes mellitus. Diabetologia 44:983–991

    PubMed  CAS  Google Scholar 

  69. Singhal P, Caumo A, Carey PE et al (2002) Regulation of endogenous glucose production after a mixed meal in type 2 diabetes. Am J Physiol Endocrinol Metab 283:E275–E283

    PubMed  CAS  Google Scholar 

  70. Magnusson I, Rothman DL, Katz LD et al (1992) Increased rate of gluconeogenesis in type II diabetes mellitus. A 13C nuclear magnetic resonance study. J Clin Invest 90:1323–1327

    PubMed  CAS  Google Scholar 

  71. Hundal RS, Krssak M, Dufour S et al (2000) Mechanism by which metformin reduces glucose production in type 2 diabetes. Diabetes 49:2063–2069

    PubMed  CAS  Google Scholar 

  72. Consoli A, Nurjhan N, Capani F et al (1989) Predominant role of gluconeogenesis in increased hepatic glucose production in NIDDM. Diabetes 38:550–557

    PubMed  CAS  Google Scholar 

  73. Mitrakou A, Kelley D, Veneman T et al (1990) Contribution of abnormal muscle and liver glucose metabolism to postprandial hyperglycemia in NIDDM. Diabetes 39:1381–1390

    PubMed  CAS  Google Scholar 

  74. Tayek JA, Katz J (1996) Glucose production, recycling, and gluconeogenesis in normals and diabetics: a mass isotopomer (U-13C)glucose study. Am J Physiol 270:E709–E717

    PubMed  CAS  Google Scholar 

  75. Ferrannini E, Simonson DC, Katz LD et al (1988) The disposal of an oral glucose load in patients with non-insulin-dependent diabetes. Metabolism 37:79–85

    PubMed  CAS  Google Scholar 

  76. Firth RG, Bell PM, Marsh HM et al (1986) Postprandial hyperglycemia in patients with noninsulin-dependent diabetes mellitus. Role of hepatic and extrahepatic tissues. J Clin Invest 77:1525–1532

    PubMed  CAS  Google Scholar 

  77. Kelley D, Mokan M, Veneman T (1994) Impaired postprandial glucose utilization in non-insulin-dependent diabetes mellitus. Metabolism 43:1549–1557

    PubMed  CAS  Google Scholar 

  78. Krssak M, Brehm A, Bernroider E et al (2004) Alterations in postprandial hepatic glycogen metabolism in type 2 diabetes. Diabetes 53:3048–3056

    PubMed  CAS  Google Scholar 

  79. McMahon M, Marsh HM, Rizza RA (1989) Effects of basal insulin supplementation on disposition of mixed meal in obese patients with NIDDM. Diabetes 38:291–303

    PubMed  CAS  Google Scholar 

  80. Proietto J, Nankervis AJ, Traianedes K et al (1992) Identification of early metabolic defects in diabetes-prone Australian aborigines. Diabetes Res Clin Pract 17:217–226

    PubMed  CAS  Google Scholar 

  81. Thorburn A, Litchfield A, Fabris S et al (1995) Abnormal transient rise in hepatic glucose production after oral glucose in non-insulin-dependent diabetic subjects. Diabetes Res Clin Pract 28:127–135

    PubMed  CAS  Google Scholar 

  82. Basu A, Basu R, Shah P et al (2001) Type 2 diabetes impairs splanchnic uptake of glucose but does not alter intestinal glucose absorption during enteral glucose feeding: additional evidence for a defect in hepatic glucokinase activity. Diabetes 50:1351–1362

    PubMed  CAS  Google Scholar 

  83. Felig P, Wahren J, Hendler R (1978) Influence of maturity-onset diabetes on splanchnic glucose balance after oral glucose ingestion. Diabetes 27:121–126

    PubMed  CAS  Google Scholar 

  84. Basu A, Basu R, Shah P et al (2000) Effects of type 2 diabetes on the ability of insulin and glucose to regulate splanchnic and muscle glucose metabolism: evidence for a defect in hepatic glucokinase activity. Diabetes 49:272–283

    PubMed  CAS  Google Scholar 

  85. Iozzo P, Hallsten K, Oikonen V et al (2003) Insulin-mediated hepatic glucose uptake is impaired in type 2 diabetes: evidence for a relationship with glycemic control. J Clin Endocrinol Metab 88:2055–2060

    PubMed  CAS  Google Scholar 

  86. Shin JS, Torres TP, Catlin RL et al (2007) A defect in glucose-induced dissociation of glucokinase from the regulatory protein in Zucker diabetic fatty rats in the early stage of diabetes. Am J Physiol Regul Integr Comp Physiol 292:R1381–R1390

    PubMed  CAS  Google Scholar 

  87. Giaccari A, Morviducci L, Pastore L et al (1998) Relative contribution of glycogenolysis and gluconeogenesis to hepatic glucose production in control and diabetic rats.A re-examination in the presence of euglycaemia. Diabetologia 41:307–314

    PubMed  CAS  Google Scholar 

  88. Rossetti L, Giaccari A, Barzilai N et al (1993) Mechanism by which hyperglycemia inhibits hepatic glucose production in conscious rats. Implications for the pathophysiology of fasting hyperglycemia in diabetes. J Clin Invest 92:1126–1134

    PubMed  CAS  Google Scholar 

  89. Mevorach M, Giacca A, Aharon Y et al (1998) Regulation of endogenous glucose production by glucose per se is impaired in type 2 diabetes mellitus. J Clin Invest 102:744–753

    PubMed  CAS  Google Scholar 

  90. Van Schaftingen E, Detheux M, Veiga da Cunha M (1994) Short-term control of glucokinase activity: role of a regulatory protein. FASEB J 8:414–419

    PubMed  Google Scholar 

  91. Davies DR, Detheux M, Van Schaftingen E (1990) Fructose 1-phosphate and the regulation of glucokinase activity in isolated hepatocytes. Eur J Biochem 192:283–289

    PubMed  CAS  Google Scholar 

  92. Brown KS, Kalinowski SS, Megill JR et al (1997) Glucokinase regulatory protein may interact with glucokinase in the hepatocyte nucleus. Diabetes 46:179–186

    PubMed  CAS  Google Scholar 

  93. Toyoda Y, Miwa I, Kamiya M et al (1994) Evidence for glucokinase translocation by glucose in rat hepatocytes. Biochem Biophys Res Commun 204:252–256

    PubMed  CAS  Google Scholar 

  94. Jetton TL, Shiota M, Knobel SM et al (2001) Substrate-induced nuclear export and peripheral compartmentalization of hepatic glucokinase correlates with glycogen deposition. Int J Exp Diabetes Res 2:173–186

    PubMed  CAS  Google Scholar 

  95. Agius L, Peak M (1993) Intracellular binding of glucokinase in hepatocytes and translocation by glucose, fructose and insulin. Biochem J 296(pt 3):785–796

    PubMed  CAS  Google Scholar 

  96. Pagliassotti MJ, Cherrington AD (1992) Regulation of net hepatic glucose uptake in vivo. Annu Rev Physiol 54:847–860

    PubMed  CAS  Google Scholar 

  97. Chu CA, Fujimoto Y, Igawa K et al (2004) Rapid translocation of hepatic glucokinase in response to intraduodenal glucose infusion and changes in plasma glucose and insulin in conscious rats. Am J Physiol Gastrointest Liver Physiol 286:G627–G634

    PubMed  CAS  Google Scholar 

  98. Cardenas ML, Rabajille E, Niemeyer H (1984) Suppression of kinetic cooperativity of hexokinase D (glucokinase) by competitive inhibitors. A slow transition model. Eur J Biochem 145:163–171

    PubMed  CAS  Google Scholar 

  99. Toyoda Y, Kobayashi S, Ito Y et al (1997) Nuclear location of glucokinase in mammalian livers. Med Sci Res 25:627–629

    CAS  Google Scholar 

  100. Warner JP, Leek JP, Intody S et al (1995) Human glucokinase regulatory protein (GCKR): cDNA and genomic cloning, complete primary structure, and chromosomal localization. Mamm Genome 6:532–536

    PubMed  CAS  Google Scholar 

  101. Brocklehurst KJ, Payne VA, Davies RA et al (2004) Stimulation of hepatocyte glucose metabolism by novel small molecule glucokinase activators. Diabetes 53:535–541

    PubMed  CAS  Google Scholar 

  102. Tonelli J, Kishore P, Lee DE et al (2005) The regulation of glucose effectiveness: how glucose modulates its own production. Curr Opin Clin Nutr Metab Care 8:450–456

    PubMed  CAS  Google Scholar 

  103. Moore MC, Davis SN, Mann SL et al (2001) Acute fructose administration improves oral glucose tolerance in adults with type 2 diabetes. Diabetes Care 24:1882–1887

    PubMed  CAS  Google Scholar 

  104. Hawkins M, Gabriely I, Wozniak R et al (2002) Glycemic control determines hepatic and peripheral glucose effectiveness in type 2 diabetic subjects. Diabetes 51:2179–2189

    PubMed  CAS  Google Scholar 

  105. Caro JF, Triester S, Patel VK et al (1995) Liver glucokinase: decreased activity in patients with type II diabetes. Horm Metab Res 27:19–22

    PubMed  CAS  Google Scholar 

  106. Kahn BB, Shulman GI, DeFronzo RA et al (1991) Normalization of blood glucose in diabetic rats with phlorizin treatment reverses insulin-resistant glucose transport in adipose cells without restoring glucose transporter gene expression. J Clin Invest 87:561–570

    PubMed  CAS  Google Scholar 

  107. Leahy JL, Bonner-Weir S, Weir GC (1992) Beta-cell dysfunction induced by chronic hyperglycemia. Current ideas on mechanism of impaired glucose-induced insulin secretion. Diabetes Care 15:442–455

    PubMed  CAS  Google Scholar 

  108. Rossetti L, Giaccari A, DeFronzo RA (1990) Glucose toxicity. Diabetes Care 13:610–630

    PubMed  CAS  Google Scholar 

  109. Nawano M, Oku A, Ueta K et al (2000) Hyperglycemia contributes insulin resistance in hepatic and adipose tissue but not skeletal muscle of ZDF rats. Am J Physiol Endocrinol Metab 278:E535–E543

    PubMed  CAS  Google Scholar 

  110. Ueta K, Kuikwon K, Printz RL et al (2011) Glucotoxicity (GTX) contributes to progressive reduction of hepatic glucokinase (GK) in Zucker diabetic fatty rats (ZDF) by affecting a post-transcriptional process. Diabetes 60:A459

    Google Scholar 

  111. Ueta K, Torres TP, McCoy GA et al (2010) Normalization of hyperglycemia by inhibiting SGLT2 prevents progressive reduction of hepatic glucokinase (GK) expression and improves hepatic glucose metabolism (HGM) in Zucker diabetic fatty (ZDF) rats. Diabetes 59:A166

    Google Scholar 

  112. Abdul-Ghani MA, Norton L, Defronzo RA (2011) Role of sodium-glucose cotransporter 2 (SGLT 2) inhibitors in the treatment of type 2 diabetes. Endocr Rev 32:515–531

    PubMed  CAS  Google Scholar 

  113. Baynes J, Murray DB (2009) Cardiac and renal function are progressively impaired with aging in Zucker diabetic fatty type II diabetic rats. Oxid Med Cell Longev 2:328–334

    PubMed  Google Scholar 

  114. Danis RP, Yang Y (1993) Microvascular retinopathy in the Zucker diabetic fatty rat. Invest Ophthalmol Vis Sci 34:2367–2371

    PubMed  CAS  Google Scholar 

  115. Kim J, Kim CS, Sohn E et al (2010) Lens epithelial cell apoptosis initiates diabetic cataractogenesis in the Zucker diabetic fatty rat. Graefes Arch Clin Exp Ophthalmol 248:811–818

    PubMed  Google Scholar 

  116. Fredersdorf S, Thumann C, Ulucan C et al (2004) Myocardial hypertrophy and enhanced left ventricular contractility in Zucker diabetic fatty rats. Cardiovasc Pathol 13:11–19

    PubMed  CAS  Google Scholar 

  117. Pamarthi MF, Rudd MA, Bukoski RD (2002) Normal perivascular sensory dilator nerve function in arteries of Zucker diabetic fatty rats. Am J Hypertens 15:310–315

    PubMed  CAS  Google Scholar 

  118. Toblli JE, Cao G, Giani JF et al (2011) Long-term treatment with nebivolol attenuates renal damage in Zucker diabetic fatty rats. J Hypertens 29:1613–1623

    PubMed  CAS  Google Scholar 

  119. Mizuno M, Sada T, Kato M et al (2002) Renoprotective effects of blockade of angiotensin II AT1 receptors in an animal model of type 2 diabetes. Hypertens Res 25:271–278

    PubMed  CAS  Google Scholar 

  120. Hoshi S, Shu Y, Yoshida F et al (2002) Podocyte injury promotes progressive nephropathy in Zucker diabetic fatty rats. Lab Invest 82:25–35

    PubMed  CAS  Google Scholar 

  121. Cosson E, Valensi P, Laude D et al (2009) Arterial stiffness and the autonomic nervous system during the development of Zucker diabetic fatty rats. Diabetes Metab 35:364–370

    PubMed  CAS  Google Scholar 

  122. Marsh SA, Powell PC, Agarwal A et al (2007) Cardiovascular dysfunction in Zucker obese and Zucker diabetic fatty rats: role of hydronephrosis. Am J Physiol Heart Circ Physiol 293:H292–H298

    PubMed  CAS  Google Scholar 

  123. Coppey LJ, Gellett JS, Davidson EP et al (2001) Effect of antioxidant treatment of streptozotocin-induced diabetic rats on endoneurial blood flow, motor nerve conduction velocity, and vascular reactivity of epineurial arterioles of the sciatic nerve. Diabetes 50:1927–1937

    PubMed  CAS  Google Scholar 

  124. Shafrir E (1992) Animal models of non-­insulin-dependent diabetes. Diabetes Metab Rev 8:179–208

    PubMed  CAS  Google Scholar 

  125. Oltman CL, Coppey LJ, Gellett JS et al (2005) Progression of vascular and neural dysfunction in sciatic nerves of Zucker diabetic fatty and Zucker rats. Am J Physiol Endocrinol Metab 289:E113–E122

    PubMed  CAS  Google Scholar 

  126. Oltman CL, Davidson EP, Coppey LJ et al (2008) Vascular and neural dysfunction in Zucker diabetic fatty rats: a difficult condition to reverse. Diabetes Obes Metab 10:64–74

    PubMed  CAS  Google Scholar 

  127. Slavkovsky R, Kohlerova R, Tkacova V et al (2011) Zucker diabetic fatty rat: a new model of impaired cutaneous wound repair with type II diabetes mellitus and obesity. Wound Repair Regen 19:515–525

    PubMed  Google Scholar 

  128. Morton GJ, Schwartz MW (2011) Leptin and the central nervous system control of glucose metabolism. Physiol Rev 91:389–411

    PubMed  CAS  Google Scholar 

  129. Sanchez-Gutierrez JC, Sanchez-Arias JA, Lechuga CG et al (1994) Decreased responsiveness of basal gluconeogenesis to insulin action in hepatocytes isolated from genetically obese (fa/fa) Zucker rats. Endocrinology 134:1868–1873

    PubMed  CAS  Google Scholar 

  130. Spydevold SO, Greenbaum AL, Baquer NZ et al (1978) Adaptive responses of enzymes of carbohydrate and lipid metabolism to dietary alteration in genetically obese Zucker rats (fa/fa). Eur J Biochem 89:329–339

    PubMed  CAS  Google Scholar 

  131. Griffen SC, Wang J, German MS (2001) A genetic defect in beta-cell gene expression segregates independently from the fa locus in the ZDF rat. Diabetes 50:63–68

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masakazu Shiota .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Shiota, M., Printz, R.L. (2012). Diabetes in Zucker Diabetic Fatty Rat. In: Joost, HG., Al-Hasani, H., Schürmann, A. (eds) Animal Models in Diabetes Research. Methods in Molecular Biology, vol 933. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-068-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-068-7_8

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-067-0

  • Online ISBN: 978-1-62703-068-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics