Skip to main content

Computational Prediction of Secondary and Supersecondary Structures

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 932))

Abstract

The sequence-based prediction of the secondary and supersecondary structures enjoys strong interest and finds applications in numerous areas related to the characterization and prediction of protein structure and function. Substantial efforts in these areas over the last three decades resulted in the development of accurate predictors, which take advantage of modern machine learning models and availability of evolutionary information extracted from multiple sequence alignment. In this chapter, we first introduce and motivate both prediction areas and introduce basic concepts related to the annotation and prediction of the secondary and supersecondary structures, focusing on the β hairpin, coiled coil, and α-turn-α motifs. Next, we overview state-of-the-art prediction methods, and we provide details for 12 modern secondary structure predictors and 4 representative supersecondary structure predictors. Finally, we provide several practical notes for the users of these prediction tools.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Pauling L, Corey RB, Branson HR (1951) The structure of proteins; two hydrogen-bonded helical configurations of the polypeptide chain. Proc Natl Acad Sci USA 37:205–211

    Article  PubMed  CAS  Google Scholar 

  2. Pauling L, Corey RB (1951) The pleated sheet, a new layer configuration of polypeptide chains. Proc Natl Acad Sci U S A 37:251–256

    Article  PubMed  CAS  Google Scholar 

  3. Anfinsen CB (1973) Principles that govern the folding of protein chains. Science 181:223–230

    Article  PubMed  CAS  Google Scholar 

  4. Berman HM, Westbrook J, Feng Z et al (2000) The Protein Data Bank. Nucleic Acids Res 28:235–242

    Article  PubMed  CAS  Google Scholar 

  5. Pruitt KD, Tatusova T, Klimke W et al (2009) NCBI Reference sequences: current status, policy, and new initiatives. Nucleic Acids Res 37(Database issue):D32–D36

    Article  PubMed  CAS  Google Scholar 

  6. Gronwald W, Kalbitzer HR (2010) Automated protein NMR structure determination in solution. Methods Mol Biol 673:95–127

    Article  PubMed  CAS  Google Scholar 

  7. Chayen NE (2009) High-throughput protein crystallization. Adv Protein Chem Struct Biol 77:1–22

    Article  PubMed  CAS  Google Scholar 

  8. Zhang Y (2009) Protein structure prediction: when is it useful? Curr Opin Struct Biol 19:145–155

    Article  PubMed  CAS  Google Scholar 

  9. Ginalski K (2006) Comparative modeling for protein structure prediction. Curr Opin Struct Biol 16:172–177

    Article  PubMed  CAS  Google Scholar 

  10. Yang Y, Faraggi E, Zhao H et al. (2011) Improving protein fold recognition and template-based modeling by employing probabilistic-based matching between predicted one-dimensional structural properties of the query and corresponding native properties of templates. Bioinformatics 27(15):2076–2082

    Google Scholar 

  11. Roy A, Kucukural A, Zhang Y (2010) I-TASSER: a unified platform for automated protein structure and function prediction. Nat Protoc 5:725–738

    Article  PubMed  CAS  Google Scholar 

  12. Faraggi E, Yang Y, Zhang S et al (2009) Predicting continuous local structure and the effect of its substitution for secondary structure in fragment-free protein structure prediction. Structure 17:1515–1527

    Article  PubMed  CAS  Google Scholar 

  13. Wu S, Zhang Y (2008) MUSTER: improving protein sequence profile–profile alignments by using multiple sources of structure information. Proteins 72:547–556

    Article  PubMed  CAS  Google Scholar 

  14. Zhou H, Skolnick J (2007) Ab initio protein structure prediction using chunk-TASSER. Biophys J 93:1510–1518

    Article  PubMed  CAS  Google Scholar 

  15. Skolnick J (2006) In quest of an empirical potential for protein structure prediction. Curr Opin Struct Biol 16:166–171

    Article  PubMed  CAS  Google Scholar 

  16. Zhang H, Zhang T, Chen K et al (2011) Critical assessment of high-throughput standalone methods for secondary structure prediction. Brief Bioinform 12(6):672–688

    Google Scholar 

  17. Pei J, Grishin NV (2007) PROMALS: towards accurate multiple sequence alignments of distantly related proteins. Bioinformatics 23: 802–808

    Article  PubMed  CAS  Google Scholar 

  18. Zhang T, Zhang H, Chen K et al (2010) Analysis and prediction of RNA-binding residues using sequence, evolutionary conservation, and predicted secondary structure and solvent accessibility. Curr Protein Pept Sci 11:609–628

    Article  PubMed  CAS  Google Scholar 

  19. Pulim V, Bienkowska J, Berger B (2008) LTHREADER: prediction of extracellular ligand-receptor interactions in cytokines using localized threading. Protein Sci 17:279–292

    Article  PubMed  CAS  Google Scholar 

  20. Fischer JD, Mayer CE, Söding J (2008) Prediction of protein functional residues from sequence by probability density estimation. Bioinformatics 24:613–620

    Article  PubMed  CAS  Google Scholar 

  21. Song J, Tan H, Mahmood K et al (2009) Prodepth: predict residue depth by support vector regression approach from protein sequences only. PLoS One 4:e7072

    Article  PubMed  CAS  Google Scholar 

  22. Zhang H, Zhang T, Chen K et al (2008) Sequence based residue depth prediction using evolutionary information and predicted secondary structure. BMC Bioinform 9:388

    Article  CAS  Google Scholar 

  23. Mizianty MJ, Kurgan L (2009) Modular prediction of protein structural classes from sequences of twilight-zone identity with predicting sequences. BMC Bioinform 10:414

    Article  CAS  Google Scholar 

  24. Kurgan L, Cios K, Chen K (2008) SCPRED: accurate prediction of protein structural class for sequences of twilight-zone similarity with predicting sequences. BMC Bioinform 9:226

    Article  CAS  Google Scholar 

  25. Chen K, Kurgan L (2007) PFRES: protein fold classification by using evolutionary information and predicted secondary structure. Bioinformatics 23:2843–2850

    Article  PubMed  CAS  Google Scholar 

  26. Xue B, Faraggi E, Zhou Y (2009) Predicting residue-residue contact maps by a two-layer, integrated neural-network method. Proteins 76:176–183

    Article  PubMed  CAS  Google Scholar 

  27. Cheng J, Baldi P (2007) Improved residue contact prediction using support vector machines and a large feature set. BMC Bioinform 8:113

    Article  CAS  Google Scholar 

  28. Mizianty MJ, Stach W, Chen K et al (2010) Improved sequence-based prediction of disordered regions with multilayer fusion of multiple information sources. Bioinformatics 26:i489–i496

    Article  PubMed  CAS  Google Scholar 

  29. Mizianty MJ, Zhang T, Xue B et al (2011) In-silico prediction of disorder content using hybrid sequence representation. BMC Bioinform 12:245

    Article  Google Scholar 

  30. Schlessinger A, Punta M, Yachdav G et al (2009) Improved disorder prediction by combination of orthogonal approaches. PLoS One 4:e4433

    Article  PubMed  CAS  Google Scholar 

  31. Zhang H, Zhang T, Gao J et al. (2012) Determination of protein folding kinetic types using sequence and predicted secondary structure and solvent accessibility. Amino Acids. 42(1):271–283

    Google Scholar 

  32. Gao J, Zhang T, Zhang H et al (2010) Accurate prediction of protein folding rates from sequence and sequence-derived residue flexibility and solvent accessibility. Proteins 78:2114–2130

    PubMed  CAS  Google Scholar 

  33. Jiang Y, Iglinski P, Kurgan L (2009) Prediction of protein folding rates from primary sequences using hybrid sequence representation. J Comput Chem 30:772–783

    Article  PubMed  CAS  Google Scholar 

  34. Mizianty M, Kurgan L (2011) Sequence-based prediction of protein crystallization, purification, and production propensity. Bioinformatics 27:i24–i33

    Article  PubMed  CAS  Google Scholar 

  35. Slabinski L, Jaroszewski L, Rychlewski L et al (2007) XtalPred: a web server for prediction of protein crystallizability. Bioinformatics 23:3403–3405

    Article  PubMed  CAS  Google Scholar 

  36. Bryson K, McGuffin LJ, Marsden RL et al (2005) Protein structure prediction servers at University College London. Nucleic Acids Res 33:W36–W38

    Article  PubMed  CAS  Google Scholar 

  37. Kurgan L, Miri Disfani F (2011) Structural protein descriptors in 1-dimension and their sequence-based predictions. Curr Protein Pept Sci. 12(6):470–489

    Google Scholar 

  38. Jones D (1999) Protein secondary structure prediction based on position-specific scoring matrices. J Mol Biol 292:195–202

    Article  PubMed  CAS  Google Scholar 

  39. Buchan DW, Ward SM, Lobley AE et al (2010) Protein annotation and modelling servers at University College London. Nucleic Acids Res 38:W563–W568

    Article  PubMed  CAS  Google Scholar 

  40. Rost B (1996) PHD: predicting one-dimensional protein structure by profile-based neural networks. Methods Enzymol 266:525–539

    Article  PubMed  CAS  Google Scholar 

  41. Rost B, Yachdav G, Liu J (2004) The predict protein server. Nucleic Acids Res 32(Web Server issue):W321–W326

    Article  PubMed  CAS  Google Scholar 

  42. O’Donnell CW, Waldispühl J, Lis M et al (2011) A method for probing the mutational landscape of amyloid structure. Bioinformatics 27:i34–i42

    Article  PubMed  CAS  Google Scholar 

  43. Bryan A Jr, Menke M, Cowen LJ et al (2009) BETASCAN: probable beta-amyloids identified by pairwise probabilistic analysis. PLoS Comput Biol 5:e1000333

    Article  PubMed  CAS  Google Scholar 

  44. Bradley P, Cowen L, Menke M et al (2001) BETAWRAP: successful prediction of parallel beta-helices from primary sequence reveals an association with many microbial pathogens. Proc Natl Acad Sci U S A 98:14819–14824

    Article  PubMed  CAS  Google Scholar 

  45. Hornung T, Volkov OA, Zaida TM et al (2008) Structure of the cytosolic part of the subunit b-dimer of Escherichia coli F0F1-ATP synthase. Biophys J 94:5053–5064

    Article  PubMed  CAS  Google Scholar 

  46. Sun ZR, Cui Y, Ling LJ et al (1998) Molecular dynamics simulation of protein folding with supersecondary structure constraints. J Protein Chem 17:765–769

    Article  PubMed  CAS  Google Scholar 

  47. Szappanos B, Süveges D, Nyitray L et al (2010) Folded-unfolded cross-predictions and protein evolution: the case study of coiled-coils. FEBS Lett 584:1623–1627

    Article  PubMed  CAS  Google Scholar 

  48. Rackham OJ, Madera M, Armstrong CT et al (2010) The evolution and structure prediction of coiled coils across all genomes. J Mol Biol 403:480–493

    Article  PubMed  CAS  Google Scholar 

  49. Gerstein M, Hegyi H (1998) Comparing genomes in terms of protein structure: surveys of a finite parts list. FEMS Microbiol Rev 22:277–304

    Article  PubMed  CAS  Google Scholar 

  50. Reddy CC, Shameer K, Offmann BO et al (2008) PURE: a webserver for the prediction of domains in unassigned regions in proteins. BMC Bioinform 9:281

    Article  CAS  Google Scholar 

  51. de la Cruz X, Hutchinson EG, Shepherd A et al (2002) Toward predicting protein topology: an approach to identifying beta hairpins. Proc Natl Acad Sci U S A 99:11157–11162

    Article  PubMed  Google Scholar 

  52. Kumar M, Bhasin M, Natt NK et al (2005) BhairPred: prediction of beta-hairpins in a protein from multiple alignment information using ANN and SVM techniques. Nucleic Acids Res 33(Web Server issue):W154–W159

    Article  PubMed  CAS  Google Scholar 

  53. Barton GJ (1995) Protein secondary structure prediction. Curr Opin Struct Biol 5:372–376

    Article  PubMed  CAS  Google Scholar 

  54. Heringa J (2000) Computational methods for protein secondary structure prediction using multiple sequence alignments. Curr Protein Pept Sci 1:273–301

    Article  PubMed  CAS  Google Scholar 

  55. Rost B (2001) Protein secondary structure prediction continues to rise. J Struct Biol 134:204–218

    Article  PubMed  CAS  Google Scholar 

  56. Albrecht M, Tosatto SC, Lengauer T et al (2003) Simple consensus procedures are effective and sufficient in secondary structure prediction. Protein Eng 16:459–462

    Article  PubMed  CAS  Google Scholar 

  57. Rost B (2009) Prediction of protein structure in 1D—secondary structure, membrane regions, and solvent accessibility. In: Bourne PE, Weissig H (eds) Structural bioinformatics, 2nd edn. Wiley, New York, pp 679–714

    Google Scholar 

  58. Pirovano W, Heringa J (2010) Protein secondary structure prediction. Methods Mol Biol 609:327–348

    Article  PubMed  CAS  Google Scholar 

  59. Singh M (2006) Predicting protein secondary and supersecondary structure. In: Aluru S (ed) Handbook of computational molecular biology. Chapman and Hall/CRC Press, pp 29.1–29.29

    Google Scholar 

  60. Gruber M, Söding J, Lupas AN (2006) Comparative analysis of coiled-coil prediction methods. J Struct Biol 155:140–145

    Article  PubMed  CAS  Google Scholar 

  61. Kolodny R, Honig B (2006) VISTAL-a new 2D visualization tool of protein 3D structural alignments. Bioinformatics 22:2166–2167

    Article  PubMed  CAS  Google Scholar 

  62. Moreland JL, Gramada A, Buzko OV et al (2005) The molecular biology toolkit (MBT): a modular platform for developing molecular visualization applications. BMC Bioinformatics 6:21

    Article  PubMed  CAS  Google Scholar 

  63. Porollo AA, Adamczak R, Meller J (2004) POLYVIEW: a flexible visualization tool for structural and functional annotations of proteins. Bioinformatics 20:2460–2462

    Article  PubMed  CAS  Google Scholar 

  64. Murzin AG, Brenner SE, Hubbard T et al (1995) SCOP: a structural classification of proteins database for the investigation of sequences and structures. J Mol Biol 247:536–540

    PubMed  CAS  Google Scholar 

  65. Orengo CA, Michie AD, Jones S et al (1997) CATH—a hierarchic classification of protein domain structures. Structure 5:1093–1108

    Article  PubMed  CAS  Google Scholar 

  66. Andreeva A, Howorth D, Chandonia JM et al (2008) Data growth and its impact on the SCOP database: new developments. Nucl Acids Res 36:D419–D425

    Article  PubMed  CAS  Google Scholar 

  67. Cuff AL, Sillitoe I, Lewis T et al (2011) Extending CATH: increasing coverage of the protein structure universe and linking structure with function. Nucleic Acids Res 39(Database issue):D420–D426

    Article  PubMed  Google Scholar 

  68. Levitt M, Greer J (1997) Automatic identification of secondary structure in globular proteins. J Mol Biol 114:181–239

    Article  Google Scholar 

  69. Kabsch W, Sander C (1983) Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers 22:2577–2637

    Article  PubMed  CAS  Google Scholar 

  70. Richards F, Kundrot CE (1988) Identification of structural motifs from protein coordinate data: secondary structure and first-level supersecondary structure. Proteins 3:71–84

    Article  PubMed  CAS  Google Scholar 

  71. Sklenar H, Etchebest C, Lavery R (1989) Describing protein structure: a general algorithm yielding complete helicoidal parameters and a unique overall axis. Proteins 6:46–60

    Article  PubMed  CAS  Google Scholar 

  72. Frishman D, Argos P (1995) Knowledge-based protein secondary structure assignment. Proteins 23:566–579

    Article  PubMed  CAS  Google Scholar 

  73. Labesse G, Colloc’h N, Pothier J et al (1997) P-SEA: a new efficient assignment of secondary structure from C alpha trace of proteins. Comput Appl Biosci 13:291–295

    PubMed  CAS  Google Scholar 

  74. King S, Johnson WC (1999) Assigning secondary structure from protein coordinate data. Proteins 3:313–320

    Article  Google Scholar 

  75. Fodje M, Al-Karadaghi S (2002) Occurrence, conformational features and amino acid propensities for the pi-helix. Protein Eng 15:353–358

    Article  PubMed  CAS  Google Scholar 

  76. Martin J, Letellier G, Marin A et al (2005) Protein secondary structure assignment revisited: a detailed analysis of different assignment methods. BMC Struct Biol 5:17

    Article  PubMed  CAS  Google Scholar 

  77. Cubellis MV, Cailliez F, Lovell SC (2005) Secondary structure assignment that accurately reflects physical and evolutionary characteristics. BMC Bioinform 6(Suppl 4):S8

    Article  CAS  Google Scholar 

  78. Majumdar I, Krishna SS, Grishin NV (2005) PALSSE: a program to delineate linear secondary structural elements from protein structures. BMC Bioinform 6:202

    Article  CAS  Google Scholar 

  79. Zhang W, Dunker AK, Zhou Y (2008) Assessing secondary structure assignment of protein structures by using pairwise sequence-alignment benchmarks. Proteins 71:61–67

    Article  PubMed  CAS  Google Scholar 

  80. Hosseini SR, Sadeghi M, Pezeshk H et al (2008) PROSIGN: a method for protein secondary structure assignment based on three-dimensional coordinates of consecutive C(alpha) atoms. Comput Biol Chem 32:406–411

    Article  PubMed  CAS  Google Scholar 

  81. Park SY, Yoo MJ, Shin J et al (2011) SABA (secondary structure assignment program based on only alpha carbons): a novel pseudo center geometrical criterion for accurate assignment of protein secondary structures. BMB Rep 44:118–122

    Article  PubMed  CAS  Google Scholar 

  82. Klose DP, Wallace BA, Janes RW (2010) 2Struc: the secondary structure server. Bioinformatics 26:2624–2625

    Article  PubMed  CAS  Google Scholar 

  83. Moult J, Pedersen JT, Judson R et al (1995) A large-scale experiment to assess protein structure prediction methods. Proteins. 23:ii-v.

    Google Scholar 

  84. Koh IY, Eyrich VA, Marti-Renom MA et al (2003) EVA: evaluation of protein structure prediction servers. Nucleic Acids Res 31:3311–3315

    Article  PubMed  CAS  Google Scholar 

  85. Parry DA (2008) Fifty years of coiled-coils and alpha-helical bundles: a close relationship between sequence and structure. J Struct Biol 163:258–269

    Article  PubMed  CAS  Google Scholar 

  86. Pellegrini-Calace M, Thornton JM (2005) Detecting DNA-binding helix-turn-helix structural motifs using sequence and structure information. Nucleic Acids Res 33:2129–2140

    Article  PubMed  CAS  Google Scholar 

  87. Hutchinson EG, Thornton JM (1996) PROMOTIF—a program to identify and analyze structural motifs in proteins. Protein Sci 5:212–220

    Article  PubMed  CAS  Google Scholar 

  88. Walshaw J, Woolfson DN (2001) Socket: a program for identifying and analysing coiled-coil motifs within protein structures. J Mol Biol 307:1427–1450

    Article  PubMed  CAS  Google Scholar 

  89. Testa OD, Moutevelis E, Woolfson DN (2009) CC+: a relational database of coiled-coil structures. Nucleic Acids Res 37(Database issue):D315–D322

    Article  PubMed  CAS  Google Scholar 

  90. Michalopoulos I, Torrance GM, Gilbert DR et al (2004) TOPS: an enhanced database of protein structural topology. Nucleic Acids Res 32(Database issue):D251–D254

    Article  PubMed  CAS  Google Scholar 

  91. Rost B, Sander C (1993) Improved prediction of protein secondary structure by use of sequence profiles and neural networks. Proc Natl Acad Sci U S A 90:7558–7562

    Article  PubMed  CAS  Google Scholar 

  92. Altschul SF, Madden TL, Schäffer AA et al (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  PubMed  CAS  Google Scholar 

  93. Faraggi E, Xue B, Zhou Y (2009) Improving the prediction accuracy of residue solvent accessibility and real-value backbone torsion angles of proteins by guided-learning through a two-layer neural network. Proteins 74:847–856

    Article  PubMed  CAS  Google Scholar 

  94. Dor O, Zhou Y (2007) Achieving 80% ten-fold cross-validated accuracy for secondary structure prediction by large-scale training. Proteins 66:838–845

    Article  PubMed  CAS  Google Scholar 

  95. Zhou T, Shu N, Hovmöller S (2010) A novel method for accurate one-dimensional protein structure prediction based on fragment matching. Bioinformatics 26:470–477

    Article  PubMed  CAS  Google Scholar 

  96. Kountouris P, Hirst JD (2009) Prediction of backbone dihedral angles and protein secondary structure using support vector machines. BMC Bioinform 10:437

    Article  CAS  Google Scholar 

  97. Karplus K, Barrett C, Hughey R (1998) Hidden Markov models for detecting remote protein homologies. Bioinformatics 14:846–856

    Article  PubMed  CAS  Google Scholar 

  98. Karplus K, Karchin R, Barrett C et al (2001) What is the value added by human intervention in protein structure prediction? Proteins 5(Suppl):86–91

    Article  PubMed  CAS  Google Scholar 

  99. Karplus K, Karchin R, Draper J et al (2003) Combining local-structure, fold-recognition, and new fold methods for protein structure prediction. Proteins 53:491–496

    Article  PubMed  CAS  Google Scholar 

  100. Karplus K, Katzman S, Shackleford G et al (2005) SAM-T04: what is new in protein-structure prediction for CASP6. Proteins 61(Suppl 7):135–142

    Article  PubMed  CAS  Google Scholar 

  101. Karplus K (2009) SAM-T08, HMM-based protein structure prediction. Nucleic Acids Res 37(Web Server issue):W492–W497

    Article  PubMed  CAS  Google Scholar 

  102. Montgomerie S, Cruz JA, Shrivastava S et al (2008) PROTEUS2: a web server for comprehensive protein structure prediction and structure-based annotation. Nucleic Acids Res 36(Web Server issue):W202–W209

    Article  PubMed  CAS  Google Scholar 

  103. Montgomerie S, Sundararaj S, Gallin WJ et al (2006) Improving the accuracy of protein secondary structure prediction using structural alignment. BMC Bioinform 7:301

    Article  CAS  Google Scholar 

  104. Cole C, Barber JD, Barton GJ (2008) The Jpred 3 secondary structure prediction server. Nucleic Acids Res 2008(36):W197–W201

    Article  CAS  Google Scholar 

  105. Cuff JA, Clamp ME, Siddiqui AS et al (1998) JPred: a consensus secondary structure prediction server. Bioinformatics 14:892–893

    Article  PubMed  CAS  Google Scholar 

  106. Cuff J, Barton GJ (2000) Application of multiple sequence alignment profiles to improve protein secondary structure prediction. Proteins 40:502–511

    Article  PubMed  CAS  Google Scholar 

  107. Won K, Hamelryck T, Prügel-Bennett A et al (2007) An evolutionary method for learning HMM structure: prediction of protein secondary structure. BMC Bioinform 8:357

    Article  CAS  Google Scholar 

  108. Pollastri G, Martin AJM, Mooney C et al (2007) Accurate prediction of protein secondary structure and solvent accessibility by consensus combiners of sequence and structure information. BMC Bioinform 8:201

    Article  CAS  Google Scholar 

  109. Pollastri G, McLysaght A (2005) Porter: a new, accurate server for protein secondary structure prediction. Bioinformatics 21:1719–1720

    Article  PubMed  CAS  Google Scholar 

  110. Martin J, Gibrat JF, Rodolphe F (2006) Analysis of an optimal hidden Markov model for secondary structure prediction. BMC Struct Biol 6:25

    Article  PubMed  CAS  Google Scholar 

  111. Karypis G (2006) YASSPP: better kernels and coding schemes lead to improvements in protein secondary structure prediction. Proteins 64:575–586

    Article  PubMed  CAS  Google Scholar 

  112. Lin K, Simossis VA, Taylor WR et al (2005) A simple and fast secondary structure prediction algorithm using hidden neural networks. Bioinformatics 21:152–159

    Article  PubMed  CAS  Google Scholar 

  113. Adamczak R, Porollo A, Meller J (2005) Combining prediction of secondary structure and solvent accessibility in proteins. Proteins 59:467–475

    Article  PubMed  CAS  Google Scholar 

  114. Cheng J, Randall AZ, Sweredoski MJ et al (2005) SCRATCH: a protein structure and structural feature prediction server. Nucleic Acids Res 33:W72–W76

    Article  PubMed  CAS  Google Scholar 

  115. Pollastri G, Przybylski D, Rost B et al (2002) Improving the prediction of protein secondary structure in three and eight classes using recurrent neural networks and profiles. Proteins 47:228–235

    Article  PubMed  CAS  Google Scholar 

  116. Madera M, Calmus R, Thiltgen G et al (2010) Improving protein secondary structure prediction using a simple k-mer model. Bioinformatics 26:596–602

    Article  PubMed  CAS  Google Scholar 

  117. Lupas A, Van Dyke M, Stock J (1991) Predicting coiled coils from protein sequences. Science 252:1162–1164

    Article  CAS  Google Scholar 

  118. Eddy SR (1998) Profile hidden Markov models. Bioinformatics 14:755–763

    Article  PubMed  CAS  Google Scholar 

  119. Eyrich VA, Martí-Renom MA, Przybylski D et al (2001) EVA: continuous automatic evaluation of protein structure prediction servers. Bioinformatics 17:1242–1243

    Article  PubMed  CAS  Google Scholar 

  120. Bau D, Martin AJ, Mooney C et al (2006) Distill: a suite of web servers for the prediction of one-, two- and three-dimensional structural features of proteins. BMC Bioinform 7:402

    Article  CAS  Google Scholar 

  121. Zhang T, Faraggi E, Zhou Y (2010) Fluctuations of backbone torsion angles obtained from NMR-determined structures and their prediction. Proteins 78:3353–3362

    Article  PubMed  CAS  Google Scholar 

  122. Jia SC, Hu XZ (2011) Using random forest algorithm to predict β-hairpin motifs. Protein Pept Lett 18:609–617

    PubMed  CAS  Google Scholar 

  123. Xia JF, Wu M, You ZH et al (2010) Prediction of beta-hairpins in proteins using physicochemical properties and structure information. Protein Pept Lett 17:1123–1128

    Article  PubMed  CAS  Google Scholar 

  124. Zou D, He Z, He J (2009) Beta-hairpin prediction with quadratic discriminant analysis using diversity measure. J Comput Chem 30:2277–2284

    Article  PubMed  CAS  Google Scholar 

  125. Hu XZ, Li QZ (2008) Prediction of the beta-hairpins in proteins using support vector machine. Protein J 27:115–122

    Article  PubMed  CAS  Google Scholar 

  126. Kuhn M, Meiler J, Baker D (2004) Strand-loop-strand motifs: prediction of hairpins and diverging turns in proteins. Proteins 54:282–288

    Article  PubMed  CAS  Google Scholar 

  127. Bartoli L, Fariselli P, Krogh A et al (2009) CCHMM_PROF: a HMM-based coiled-coil predictor with evolutionary information. Bioinformatics 25:2757–2763

    Article  PubMed  CAS  Google Scholar 

  128. McDonnell AV, Jiang T, Keating AE et al (2006) Paircoil2: improved prediction of coiled coils from sequence. Bioinformatics 2006(22):356–358

    Article  CAS  Google Scholar 

  129. Mason JM, Schmitz MA, Müller KM et al (2006) Semirational design of Jun-Fos coiled coils with increased affinity: Universal implications for leucine zipper prediction and design. Proc Natl Acad Sci U S A 103:8989–8994

    Article  PubMed  CAS  Google Scholar 

  130. Gruber M, Söding J, Lupas AN (2005) REPPER—repeats and their periodicities in fibrous proteins. Nucleic Acids Res 33(Web Server issue):W239–W243

    Article  PubMed  CAS  Google Scholar 

  131. Delorenzi M, Speed T (2002) An HMM model for coiled-coil domains and a comparison with PSSM-based predictions. Bioinformatics 18:617–625

    Article  PubMed  CAS  Google Scholar 

  132. Dodd IB, Egan JB (1990) Improved detection of helix-turn-helix DNA-binding motifs in protein sequences. Nucleic Acids Res 18:5019–5026

    Article  PubMed  CAS  Google Scholar 

  133. Narasimhan G, Bu C, Gao Y et al (2002) Mining protein sequences for motifs. J Comput Biol 9:707–720

    Article  PubMed  CAS  Google Scholar 

  134. Ferrer-Costa C, Shanahan HP, Jones S et al (2005) HTHquery: a method for detecting DNA-binding proteins with a helix-turn-helix structural motif. Bioinformatics 21:3679–3680

    Article  PubMed  CAS  Google Scholar 

  135. Wolf E, Kim PS, Berger B (1997) MultiCoil: a program for predicting two- and three-stranded coiled coils. Protein Sci 6(6):1179–1189

    Article  PubMed  CAS  Google Scholar 

  136. Ahmad S, Gromiha MM (2002) NETASA: neural network based prediction of solvent accessibility. Bioinformatics 18(6):819–824

    Article  PubMed  CAS  Google Scholar 

  137. Kabsch W (1976) A solution for the best rotation to relate two sets of vectors. Acta Cryst A32:922–923

    Google Scholar 

  138. Shanahan H, Garcia M, Jones S et al (2004) Identifying DNA binding proteins using structural motifs and the electrostatic potential. Nucleic Acids Res 32:4732–4741

    Article  PubMed  CAS  Google Scholar 

  139. Fischer D, Barret C, Bryson K et al (1999) CAFASP-1: critical assessment of fully automated structure prediction methods. Proteins Suppl 3:209–217

    Article  Google Scholar 

Download references

Acknowledgment

This work was supported by the Alberta Ingenuity and Alberta Innovates Graduate Student Scholarship to KC and the NSERC Discovery grant to LK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lukasz Kurgan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this protocol

Cite this protocol

Chen, K., Kurgan, L. (2012). Computational Prediction of Secondary and Supersecondary Structures. In: Kister, A. (eds) Protein Supersecondary Structures. Methods in Molecular Biology, vol 932. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-065-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-065-6_5

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-064-9

  • Online ISBN: 978-1-62703-065-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics