Skip to main content

Computational Simulations of Protein Folding to Engineer Amino Acid Sequences to Encourage Desired Supersecondary Structure Formation

  • Protocol
  • First Online:
Protein Supersecondary Structures

Part of the book series: Methods in Molecular Biology ((MIMB,volume 932))

Abstract

The dynamics of protein folding are complicated because of the various types of amino acid interactions that create secondary, supersecondary, and tertiary interactions. Computational modeling can be used to simulate the biophysical and biochemical interactions that determine protein folding. Effective folding to a desired protein configuration requires a compromise between speed, stability, and specificity. If the primary sequence of amino acids emphasizes one of these characteristics, the others might suffer and the folding process may not be optimized. We provide an example of a model peptide whose primary sequence produces a highly stable supersecondary two-helix bundle structure, but at the expense of lower speed and specificity of the folding process. We show how computational simulations can be used to discover the configuration of the kinetic trap that causes the degradation in the speed and specificity of folding. We also show how amino acid sequences can be engineered by specific substitutions to optimize the folding to the desired supersecondary structure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Eaton WA, Muñoz V, Hagen SJ et al (2000) Fast kinetics and mechanisms in protein folding. Annu Rev Biophys Biomol Struct 29:327–359

    Article  PubMed  CAS  Google Scholar 

  2. Gerstman BS, Chapagain PP (2008) Self-organizing dynamics in protein folding. In: Conn PM (eds) Molecular biology of protein folding, part B, progress in molecular biology and translational science, vol 84, p 1–37. Elsevier, ISBN 978-0-12-374595-8, ISSN 0079–6603

    Google Scholar 

  3. Dobson CM, Karplus M (1999) The fundamentals of protein folding: bringing together theory and experiment. Curr Opin Strcut Biol 9:92–101

    Article  CAS  Google Scholar 

  4. Gerstman BS, Chapagain PP (2005) Self-organization in protein folding and the hydrophobic interaction. J Chem Phys 123(054901):1–6

    Google Scholar 

  5. Alm E, Baker D (1999) Matching theory and experiment in protein folding. Curr Opin Struct Biol 9:189–196

    Article  PubMed  CAS  Google Scholar 

  6. Onuchic JN, Luthey-Schulten Z, Wolynes PG (1997) Theory of protein folding: the energy landscape perspective. Annu Rev Phys Chem 48:545–600

    Article  PubMed  CAS  Google Scholar 

  7. Mayor U, Johnson CM, Daggett V et al (2000) Protein folding and unfolding in microseconds to nanoseconds by experiment and simulation. Proc Natl Acad Sci U S A 97:13518–13522

    Article  PubMed  CAS  Google Scholar 

  8. Honig B (1999) Protein folding: from the levinthal paradox to structure prediction. J Mol Biol 293:283–293

    Article  PubMed  CAS  Google Scholar 

  9. Mirny LA, Abkevich VI, Shakhnovich EI (1998) How evolution makes proteins fold quickly. Proc Natl Acad Sci U S A 95:4976–4981

    Article  PubMed  CAS  Google Scholar 

  10. Shakhnovich EI, Gutin AM (1993) Engineering of stable and fast-folding sequences of model proteins. Proc Natl Acad Sci USA 90: 7195–7199

    Article  PubMed  CAS  Google Scholar 

  11. Scalley-Kim M, Baker D (2004) Characterization of the folding energy landscapes of computer generated proteins suggests high folding free energy barriers and cooperativity may be consequences of natural selection. J Mol Biol 338:573–583

    Article  PubMed  CAS  Google Scholar 

  12. Vendruscolo M, Paci E, Dobson CM et al (2001) Three key residues form a critical contact network in a protein folding transition state. Nature 409:641–645

    Article  PubMed  CAS  Google Scholar 

  13. Chapagain PP, Gerstman BS (2006) Removal of kinetic traps and enhanced protein folding by strategic substitution of amino acids in a model α-helical hairpin peptide. Biopolymers 81:167–178

    Article  PubMed  CAS  Google Scholar 

  14. Gilmanshin R, Williams S, Callender RH et al (1997) Fast events in protein folding: relaxation dynamics of secondary and tertiary structure in native apomyoglobin. Proc Natl Acad Sci U S A 94:3709–3713

    Article  PubMed  CAS  Google Scholar 

  15. Mayor U, Guydosh NR, Johnson CM et al (2003) The complete folding pathway of a protein from nanoseconds to microseconds. Nature 421:863–867

    Article  PubMed  CAS  Google Scholar 

  16. Myers JK, Oas TG (2001) Preorganized secondary structure as an important determinant of fast protein folding. Nat Struct Biol 8:552–558

    Article  PubMed  CAS  Google Scholar 

  17. Zhou Y, Karplus M (1999) Interpreting the folding kinetics of helical proteins. Nature 401:400–403

    PubMed  CAS  Google Scholar 

  18. Brooks BR, Bruccoleri RE, Olafson BD et al (1983) CHARMM: a program for macromolecular energy, minimization, and dynamics calculations. J Comp Chem 4:187

    Article  CAS  Google Scholar 

  19. Eswar N, Webb B, Marti-Renom MA et al (2006) Comparative protein structure modeling using MODELLER. Curr Protoc Bioinform. Chapter 5, Unit 5 6.

    Google Scholar 

  20. Feig M, Karanicolas J, Brooks CL (2004) MMTSB tool set: enhanced sampling and multiscale modeling methods for applications in structural biology. J Mol Graph Model 22:377

    Article  PubMed  CAS  Google Scholar 

  21. Dill KA, Chan HS (1997) From levinthal to pathways to funnels. Nat Struct Biol 4:10–19

    Article  PubMed  CAS  Google Scholar 

  22. Dinner AR, Sali A, Karplus M (1996) The folding mechanism of larger model proteins: role of native structure. Proc Natl Acad Sci U S A 93:8356–8361

    Article  PubMed  CAS  Google Scholar 

  23. Muñoz V, Eaton WA (1999) A simple model for calculating the kinetics of protein folding from three-dimensional structures. Proc Natl Acad Sci U S A 96:11311–11316

    Article  PubMed  Google Scholar 

  24. Dill KA, Bromberg S, Yue K et al (1995) Principles of protein folding—a perspective from simple exact models. Protein Sci 4:561–602

    Article  PubMed  CAS  Google Scholar 

  25. Liu Y, Chagagain PP, Parra JL et al (2008) Lattice model simulation of interchain protein interactions and the folding dynamics and dimerization of the GCN4 leucine zipper. J Chem Phys 128(045106):1–10

    Google Scholar 

  26. Skolnick J, Kolinski A (1990) Simulations of the folding of a globular protein—science. Science 250:1121–1125

    Article  PubMed  CAS  Google Scholar 

  27. Skolnick J, Kolinski A (1991) Dynamic Monte Carlo simulations of a new lattice model of globular protein folding, structure and dynamics. J Mol Biol 221:499–531

    Article  PubMed  CAS  Google Scholar 

  28. Chapagain PP, Gerstman BS (2003) Finite size scaling of structural transitions in a simulated protein with secondary and tertiary structure. J Chem Phys 119:1174–1180

    Article  CAS  Google Scholar 

  29. Kolinski A, Milik M, Skolnick J (1991) Static and dynamic properties of a new lattice model of polypeptide chains. J Chem Phys 94:3978–3985

    Article  CAS  Google Scholar 

  30. Kolinski A, Skolnick J (1994) Monte Carlo simulations of protein folding. I. Lattice model and interaction scheme. Proteins 18:338–352

    Article  PubMed  CAS  Google Scholar 

  31. Chapagain PP, Gerstman BS (2004) Excluded volume entropic effects on protein unfolding times and intermediary stability. J Chem Phys 120(5):2475–2481

    Article  PubMed  CAS  Google Scholar 

  32. Gerstman B, Garbourg Y (1998) J Polym Sci, Part B: Polym Phys 36:2761–2769

    Article  CAS  Google Scholar 

  33. Chagagain PP, Liu Y, Gerstman BS (2008) The trigger sequence in the leucine zipper: α-helical propensity dependence of folding and dimerization. J Chem Phys 129(175103):1–9

    Google Scholar 

  34. Liu Y, Chapagain PP, Gerstman BS (2010) Stabilization of native and non-native structures by salt bridges in a lattice model of the GCN4 leucine dimer. J Phys Chem B 114(2):796–803

    Article  PubMed  CAS  Google Scholar 

  35. Chapagain PP, Gerstman BS, Bhandari Y et al (2011) Free energy landscapes and thermodynamic parameters of complex molecules from non-equilibrium simulation trajectories. Phys Rev E 83(6):061905

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernard S. Gerstman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this protocol

Cite this protocol

Gerstman, B.S., Chapagain, P.P. (2012). Computational Simulations of Protein Folding to Engineer Amino Acid Sequences to Encourage Desired Supersecondary Structure Formation. In: Kister, A. (eds) Protein Supersecondary Structures. Methods in Molecular Biology, vol 932. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-065-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-065-6_12

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-064-9

  • Online ISBN: 978-1-62703-065-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics